【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是( 。
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠A=(90+x)°,∠B=(90﹣x)°,∠CED=90°,射線EF∥AC,2∠C﹣∠D=m.(1)判斷AC與BD的位置關(guān)系,并說明理由.
(2)如圖1,當m=30°時,求∠C、∠D的度數(shù).
(3)如圖2,求∠C、∠D的度數(shù)(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=2,E、F為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點D,垂足分別為H、G.現(xiàn)有以下結(jié)論:①當點E與點B重合時,DH=1;②GF+EH=EF;③AF2+BE2=EF2;④DGDH=2,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,連接BD,點E在BC上,點F在DC上,連接EF,且∠1=∠2.
(1)求證:EF∥BD;
(2)若BD平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”、“3”、“3”、“5”、“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎。記每次抽出兩張牌點數(shù)之差為x,按表格要求確定獎項.
獎項 | 一等獎 | 二等獎 | 三等獎 |
(1)用列表或畫樹狀圖的方法求出某同學(xué)抽一次獎獲一等獎的概率;
(2)抽一次獎獲一等獎的概率和不獲獎的概率相等嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com