(1)證明:∵DE∥BC,DF∥AB,
∴四邊形BFDE為平行四邊形,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠CBD=∠BDE,
∴∠ABD=∠BDE,
∴BE=DE,
∴平行四邊形BFDE為菱形;
(2)解:設BE=DE=x,
∵DE∥BC,
∴△AED∽△ABC,
∴
=
,
即
=
,
解得x=2.
分析:(1)先證明四邊形BFDE是平行四邊形,再根據(jù)角平分線的定義可得∠ABD=∠CBD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠CBD=∠BDE,然后求出∠ABD=∠BDE,根據(jù)等角對等邊的性質(zhì)可得BE=DE,再根據(jù)一組鄰邊相等的平行四邊形是菱形即可得證;
(2)設菱形的邊長為x,先求出△AED和△ABC相似,再根據(jù)相似三角形對應邊成比例列式求解即可.
點評:本題考查了相似三角形的判定與性質(zhì),菱形的判定與性質(zhì),先證出平行四邊形,然后找出鄰邊相等是本題的難點.