如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O切于點(diǎn)C,AD⊥CE,垂足為D.
求證:AC2=AD•AB.
證明:
連接OC,BC,
∵AB是⊙O直徑,
∴∠BCA=90°,
∵DE切⊙O于C,
∴∠DCO=90°,
∴∠DCO-∠OCA=∠BCA-∠OCA,
∴∠DCA=∠OCB,
∵OC=OB,
∴∠B=∠OCB,
∴∠B=∠DCA,
∵AD⊥DE,
∴∠ADC=∠ACB=90°,
∴△ADC△ACB,
AC
AB
=
AD
AC
,
∴AC2=AD•AB.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙A與x軸交于B(2,0)、C(4,0)兩點(diǎn),OA=3,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切⊙O于點(diǎn)D,則PD的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形ABCD內(nèi)接于⊙O,BD為⊙O直徑,將△BCD沿BD所在的直線翻折后,得到點(diǎn)C的對(duì)應(yīng)點(diǎn)N仍在⊙O上,BN交AD與點(diǎn)M.若∠AMB=60°,⊙O的半徑是3cm.
(1)求點(diǎn)O到線段ND的距離;
(2)過(guò)點(diǎn)A作BN的平行線EF,判斷直線EF與⊙O的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,⊙M與x軸相交于點(diǎn)A(2,0),B(8,0),與y軸相切于點(diǎn)C,則圓心M的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)O為Rt△ABC斜邊AC上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當(dāng)AE=EC時(shí)tanC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為4,求點(diǎn)A到CD所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA切⊙O于點(diǎn)A,PC過(guò)點(diǎn)O且于點(diǎn)B、C,若PA=6cm,PB=4cm,則⊙O的半徑為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過(guò)AB中點(diǎn)C,且分別交OA、OB于點(diǎn)E、大.
(1)求證:AB是⊙O切線;
(3)若∠B=30°,且AB=手
3
,求
EC大
的長(zhǎng)(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是半徑為5cm的⊙O外一點(diǎn),OP=8cm,以P為圓心作⊙P與⊙O相切,那么⊙P的半徑為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案