四邊形ABCD中,點(diǎn)E是AB的中點(diǎn),F是AD邊上的動(dòng)點(diǎn).連結(jié)DE、CF.
(1)若四邊形ABCD是矩形,AD=12,CD=10,如圖(1)所示.
①請(qǐng)直接寫出AE的長(zhǎng)度;
②當(dāng)DE⊥CF時(shí),試求出CF長(zhǎng)度.
(2)如圖(2),若四邊形ABCD是平行四邊形,DE與CF相交于點(diǎn)P.
探究:當(dāng)∠B與∠PC滿足什么關(guān)系時(shí),成立?并證明你的結(jié)論.
(1)①AE ="5;" ②CF=;
(2)當(dāng)∠B+∠EPC=180°時(shí),成立.證明見解析.
解析試題分析:(1) ①四邊形ABCD是矩形, CD=10,點(diǎn)E是AB的中點(diǎn),可得:AE=CD=5;
②根據(jù)已知證得△AED∽△DFC,;利用相似三角形對(duì)應(yīng)邊成比例即可;
(2)當(dāng)∠B+∠EPC=180°時(shí),成立.根據(jù)已知證得:△DFP∽△DEA,△CPD∽△CDF,再根據(jù)對(duì)應(yīng)邊成比例即可.
試題解析:(1)①∵四邊形ABCD是矩形, CD=10,點(diǎn)E是AB的中點(diǎn),
∴AE=CD=5;
②∵四邊形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC
∴
在△AED中,∠A =90°,AD=12,AE =5,
∴
∴
CF=;
(2)當(dāng)∠B+∠EPC=180°時(shí),成立.
∵四邊形ABCD是平行四邊形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EPC=180°,
∴∠A=∠EPC=∠FPD,
∵∠FDP=∠EDA,
∴△DFP∽△DEA,
∴,
∵∠B=∠ADC,∠B+∠EPC=180°,∠EPC+∠DPC=180°,
∴∠CPD=∠CDF,
∵∠PCD=∠DCF,
∴△CPD∽△CDF,
∴,
∴,
∴,
即當(dāng)∠B+∠EPC=180°時(shí),成立.
考點(diǎn):相似形綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(-2,4),(2,1).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′;
(3)若△ADE是△ABC關(guān)于點(diǎn)A的位似圖形,且E的坐標(biāo)為(6,-2),則點(diǎn)D的坐標(biāo)為 , 四邊形BCED面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,AB=AC=4.一動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC方向以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),到達(dá)點(diǎn)C即停止.在整個(gè)運(yùn)動(dòng)過程中,過點(diǎn)P作PD⊥BC與Rt△ABC的直角邊相交于點(diǎn)D,延長(zhǎng)PD至點(diǎn)Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)在整個(gè)運(yùn)動(dòng)過程中,設(shè)△ABC與△PQE重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(2)當(dāng)點(diǎn)D在線段AB上時(shí),連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)t=4秒時(shí),以PQ為斜邊在PQ右側(cè)作等腰直角三角形PQF,將四邊形PEQF繞點(diǎn)P旋轉(zhuǎn),PE與線段AB相交于點(diǎn)M,PF與線段AC相交于點(diǎn)N.試判斷在這一旋轉(zhuǎn)過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長(zhǎng)x之間的函數(shù)關(guān)系式以及相應(yīng)的自變量x的取值范圍;若不發(fā)生變化,求出此定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
理解與應(yīng)用
小明在學(xué)習(xí)相似三角形時(shí),在北京市義務(wù)教育課程改革實(shí)驗(yàn)教材第17冊(cè)書,第37頁(yè)遇到這樣一道題:
如圖1,在△ABC中,P是邊AB上的一點(diǎn),聯(lián)結(jié)CP.
要使△ACP∽△ABC,還需要補(bǔ)充的一個(gè)條件是____________,或_________.
請(qǐng)回答:
(1)小明補(bǔ)充的條件是____________________,或_________________.
(2)請(qǐng)你參考上面的圖形和結(jié)論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠B= 90°,點(diǎn)P從A點(diǎn)開始沿AB邊向點(diǎn)B以1厘米/秒的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2厘米/秒的速度移動(dòng)。
(1)如果P、Q分別從A、B兩點(diǎn)同時(shí)出發(fā),經(jīng)過幾秒鐘,△PBQ的面積等于8厘米2?
(2)如果P、Q兩分別從A、B兩點(diǎn)同時(shí)出發(fā),并且P到B又繼續(xù)在BC邊上前進(jìn),Q到C后又繼續(xù)在CA邊上前進(jìn),經(jīng)過幾秒鐘,△PCQ的面積等于12﹒6厘米2 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問題:
(1)如圖1,將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA,OB交于點(diǎn)C,D.
①比較大。篜C______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結(jié)論.
(2)將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),一直角邊與邊OA交于點(diǎn)C,且OC=1,另一直角邊與直線OB,直線OA分別交于點(diǎn)D,E,當(dāng)以P,C,E為頂點(diǎn)的三角形與△OCD相似時(shí),試求的長(zhǎng).(提示:請(qǐng)先在備用圖中畫出相應(yīng)的圖形,再求的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,聯(lián)結(jié)AF、AE,交BD于點(diǎn)G.
(1)如圖(1),求證:∠EAF=∠ABD;
圖(1)
(2)如圖(2),當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),聯(lián)結(jié)BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直角△ABC中,∠C=90°,AB=2,sinB=,點(diǎn)P為邊BC上一動(dòng)點(diǎn),PD∥AB,PD交AC于點(diǎn)D,連結(jié)AP.
(1)求、的長(zhǎng);
(2)設(shè)的長(zhǎng)為,的面積為.當(dāng)為何值時(shí),最大并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com