【題目】先化簡(jiǎn),再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

【答案】解:原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y
=[x2y(2xy﹣2)]÷x2y
=2xy﹣2,
當(dāng)x= ,y= 時(shí),原式=2( )( )﹣2=﹣12+4
【解析】原式中括號(hào)中利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并后利用多項(xiàng)式除以單項(xiàng)式法則計(jì)算得到最簡(jiǎn)結(jié)果,把x與y的值代入計(jì)算即可求出值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次根式的混合運(yùn)算和多項(xiàng)式除以單項(xiàng)式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號(hào)的先算括號(hào)里的(或先去括號(hào));多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線(xiàn)段EF的兩個(gè)動(dòng)點(diǎn),且MN= EF,若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點(diǎn)間的距離是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車(chē)P沿道路ON方向行駛時(shí),在以P為圓心50米長(zhǎng)為半徑的圓形區(qū)域內(nèi)都會(huì)受到卡車(chē)噪聲的影響,且卡車(chē)P與學(xué)校A的距離越近噪聲影響越大.若已知重型運(yùn)輸卡車(chē)P沿道路ON方向行駛的速度為18千米/時(shí).

(1)求對(duì)學(xué)校A的噪聲影響最大時(shí)卡車(chē)P與學(xué)校A的距離;
(2)求卡車(chē)P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為(
A.55°
B.50°
C.45°
D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具專(zhuān)柜要經(jīng)營(yíng)一種新上市的兒童玩具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.
(1)寫(xiě)出專(zhuān)柜銷(xiāo)售這種玩具,每天所得的銷(xiāo)售利潤(rùn)W(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該玩具每天的銷(xiāo)售利潤(rùn)最大;
(3)專(zhuān)柜結(jié)合上述情況,設(shè)計(jì)了A、B兩種營(yíng)銷(xiāo)方案: 方案A:該玩具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件玩具的利潤(rùn)至少為25元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在BC邊上,且BD=BC,過(guò)點(diǎn)B作CD的垂線(xiàn)交AC于點(diǎn)O,以O(shè)為圓心,OC為半徑畫(huà)圓.
(1)求證:AB是⊙O的切線(xiàn);
(2)若AB=10,AD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,E是AB的中點(diǎn),AB=10,AC=9,DE=12,則△CDE的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境
已知矩形的面積為S(S為常數(shù),S>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最。孔钚≈凳嵌嗌?
數(shù)學(xué)模型
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為y=2(x+ )(x>0)
探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+ (x>0)的圖象性質(zhì).
①列表:

x

1

2

3

4

y

m

2

表中m=;
②描點(diǎn):如圖所示;

③連線(xiàn):請(qǐng)?jiān)趫D中畫(huà)出該函數(shù)的圖象;
④觀察圖象,寫(xiě)出兩條函數(shù)的性質(zhì);
(2)解決問(wèn)題
在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r(shí),除了通過(guò)觀察圖象,還可以通過(guò)配方得到.同樣通過(guò)配方也可以求函數(shù)y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 +2 = +2
≥0,∴y≥2
∴當(dāng) =0,即x=1時(shí),y最小值=2
請(qǐng)類(lèi)比上面配方法,直接寫(xiě)出“問(wèn)題情境”中的問(wèn)題答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年榕城區(qū)從中隨機(jī)調(diào)查了5所初中九年級(jí)學(xué)生的數(shù)學(xué)考試成績(jī),學(xué)生的考試成績(jī)情況如表(數(shù)學(xué)考試滿(mǎn)分120分)

分?jǐn)?shù)段

頻數(shù)

頻率

72分以下

368

0.2

72﹣﹣﹣﹣80分

460

0.25

81﹣﹣﹣﹣95分

96﹣﹣﹣﹣108分

184

0.2

109﹣﹣﹣﹣119分

120分

54


(1)這5所初中九年級(jí)學(xué)生的總?cè)藬?shù)有多少人?
(2)統(tǒng)計(jì)時(shí),老師漏填了表中空白處的數(shù)據(jù),請(qǐng)你幫老師填上;
(3)從這5所初中九年級(jí)學(xué)生中隨機(jī)抽取一人,恰好是108分以上(不包括108分)的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案