【題目】設(shè)θ為直角三角形的一個(gè)銳角,給出θ角三角函數(shù)的兩條基本性質(zhì):①tanθ=;②cos2θ+sin2θ=1,利用這些性質(zhì)解答本題.已知cosθ+sinθ=,求值:

(1)tanθ+; (2)|cosθ-sinθ|.

【答案】(1)4;(2)

【解析】

(1)ta代入tanθ+并且通分發(fā)現(xiàn),求出cosθsinθ,代入計(jì)算即可;(2)先將所求的式子平方,展開后得到cos2θ2cosθsinθ+sin2θ,再將第一步求解中的cosθsinθ,cos2θ+sin2θ1代入計(jì)算再求出算數(shù)平方根即可

(1)∵cosθ+sinθ=,

∴(cosθ+sinθ)2=(2

cos2θ+2cosθsinθ+sin2θ,

cosθsinθ=,

tanθ+

=+

=

=

=4

(2)∵(cosθ﹣sinθ)2cos2θ﹣2cosθsinθ+sin2θ=1﹣2×,

cosθ﹣sinθ=±,

∴|cosθ﹣sinθ|=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的圖象如圖所示,拋物線過點(diǎn),則下列結(jié)論:

;②;③;④為一切實(shí)數(shù));⑤;正確的個(gè)數(shù)有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O是正方形ABCD對角線BD的中點(diǎn).

(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得CEF=90°,過點(diǎn)E作MEAD,交AB于點(diǎn)M,交CD于點(diǎn)N.

AEM=FEM; 點(diǎn)F是AB的中點(diǎn);

(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請判斷EFC的形狀,并說明理由;

(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EFCE,交AB于點(diǎn)F,當(dāng)時(shí),請猜想的值(請直接寫出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋里有 個(gè)除顏色外都相同的球,其中有 個(gè)紅球, 個(gè)黃球.

(1) 若從中隨意摸出一個(gè)球,求摸出紅球的可能性;

(2) 若要使從中隨意摸出一個(gè)球是紅球的可能性為 ,求袋子中需再加入幾個(gè)紅球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)yk1x的圖象與反比例函數(shù)的圖象的一個(gè)交點(diǎn)是(1,3).

(1)寫出這兩個(gè)函數(shù)的表達(dá)式,并確定這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo);

(2)畫出草圖,并據(jù)此寫出使反比例函數(shù)大于正比例函數(shù)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)EAD的延長線上一點(diǎn),且DEDC,點(diǎn)P為邊AD上一動(dòng)點(diǎn),且PCPG,PGPC,點(diǎn)FEG的中點(diǎn).當(dāng)點(diǎn)PD點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),則CF的最小值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應(yīng)降價(jià)多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形OABC的頂點(diǎn)O,B在y軸上,頂點(diǎn)A在反比例函數(shù)y=上,頂點(diǎn)C在反比例函數(shù)y=上,則平行四邊形OABC的面積是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等腰直角三角形,∠ACB=90°,AB=8cm,動(dòng)點(diǎn)P、Q以2cm/s的速度分別從點(diǎn)A、B同時(shí)出發(fā),點(diǎn)P沿AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q沿BA向終點(diǎn)A運(yùn)動(dòng),過點(diǎn)PPDAC于點(diǎn)D,以PD為邊向右側(cè)作正方形PDEF,過點(diǎn)QQGAB,交折線BCCA于點(diǎn)G與點(diǎn)C不重合,以QG為邊作等腰直角△QGH,且點(diǎn)G為直角頂點(diǎn),點(diǎn)CH始終在QG的同側(cè),設(shè)正方形PDEF與△QGH重疊部分圖形的面積為Scm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts)(0<t<4).

(1)當(dāng)點(diǎn)F在邊QH上時(shí),求t的值.

(2)點(diǎn)正方形PDEF與△QGH重疊部分圖形是四邊形時(shí),求St之間的函數(shù)關(guān)系式;

(3)當(dāng)FH所在的直線平行或垂直AB時(shí),直接寫出t的值.

查看答案和解析>>

同步練習(xí)冊答案