【題目】已知,如圖,在ABC中,ADBC邊上的高線,CEAB邊上的中線,DGCEGCGEG

1)求證:CDAE;

2)若ADBDCD2,則求ABD的面積.

【答案】1)見解析;(24

【解析】

(1)根據(jù)直角三角形的性質(zhì)得到DE=AE,根據(jù)題意證明即可;

(2)根據(jù)直角三角形的性質(zhì)求出AB,根據(jù)等腰三角形的性質(zhì)得到DEAB,根據(jù)三角形面積公式計(jì)算.

(1)∵DGCECG=EG,

DE=DC

ADBC邊上的高線,

∴∠ADB=90°,又AE=BE,

DE=AE

AE=CD;

(2)∵AE=CD=2,AB=2DE,

AB=4

AD=BD,AE=BE,

DEAB,

∴△ABD的面積=×AB×DE=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的垂直平分線交,交

1)若,求的度數(shù);

2)若,的周長(zhǎng)17,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長(zhǎng)方形的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,BC=15AB=9.

求:(1)FC的長(zhǎng);(2)EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點(diǎn)M,點(diǎn)OAB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F

1)求證:AE⊙O的切線.

2)當(dāng)BC=8AC=12時(shí),求⊙O的半徑.

3)在(2)的條件下,求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),△AB1C1是邊長(zhǎng)為1的等邊三角形;如圖(2),取AB1的中點(diǎn)C2,畫等邊三角形AB2C2,連接B1B2;如圖(3),取AB2的中點(diǎn)C3;畫等邊三角形AB3C3,連接B2B3;如圖(4),取AB3的中點(diǎn)C4,畫等邊三角形AB4C4,連接B3B4,則B3B4的長(zhǎng)為_____.若按照這種規(guī)律一直畫下去,則BnBn+1的長(zhǎng)為_____(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較A組、B組中兩組數(shù)據(jù)的平均數(shù)及方差,一下說法正確的是(

A.A組,B組平均數(shù)及方差分別相等B.A組,B組平均數(shù)相等,B組方差大

C.A組比B組的平均數(shù)、方差都大D.A組,B組平均數(shù)相等,A組方差大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,C=90°A=30°,BC=1,將另一個(gè)含30°角的EDF30°角的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)DAB邊上移動(dòng)時(shí),DE始終與AB垂直,若CEFDEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點(diǎn)A,PB與AC的延長(zhǎng)線交于點(diǎn)M,COB=APB.

(1)求證:PB是O的切線;

(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示AB為⊙O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)FAE的延長(zhǎng)線上,且BE=EF,線段CE交弦AB于點(diǎn)D.

(1)求證:CEBF;

(2)BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對(duì)稱性可知OCAB).

查看答案和解析>>

同步練習(xí)冊(cè)答案