【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為A(3,0),C(0,2),點(diǎn)B在第一象限.
(1)寫出點(diǎn)B的坐標(biāo);
(2)若過點(diǎn)C的直線交長方形的OA邊于點(diǎn)D,且把長方形OABC的周長分成2:3的兩部分,求點(diǎn)D的坐標(biāo);
(3)如果將(2)中的線段CD向下平移3個(gè)單位長度,得到對(duì)應(yīng)線段C′D′,在平面直角坐標(biāo)系中畫出△CD′C′,并求出它的面積.

【答案】
(1)解:點(diǎn)B的坐標(biāo)(3,2)
(2)解:長方形OABC周長=2×(2+3)=10,

∵長方形OABC的周長分成2:3的兩部分,

∴兩個(gè)部分的周長分別為4,6,

∵點(diǎn)C的坐標(biāo)是(0,2),點(diǎn)D在邊OA上,

∴OD=2,

∴點(diǎn)D的坐標(biāo)為(2,0)


(3)解:

如圖所示,△CD′C′即為所求作的三角形,

CC′=3,點(diǎn)D′到CC′的距離為2,

所以,△CD′C′的面積= ×3×2=3.


【解析】(1)根據(jù)平面直角坐標(biāo)系寫出即可;(2)根據(jù)長方形的面積求出被分成的兩部分的長,然后求出OD的長度,即可得到點(diǎn)D的坐標(biāo);(3)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)C、D的對(duì)應(yīng)點(diǎn)C′、D′的位置,然后順次連接即可,求出CC′的長度以及點(diǎn)D′到CC′的距離然后利用三角形的面積公式列式計(jì)算即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象在第二象限交于點(diǎn)C,CEx軸,垂足為點(diǎn)E,tanABO=,OB=4,OE=2.

1求反比例函數(shù)的解析式;

2若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過點(diǎn)D作DFy軸,垂足為點(diǎn)F,連接OD、BF,如果SBAF=4SDFO,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x+k)(x﹣4)的積中不含有x的一次項(xiàng),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列已知條件,能唯一畫出△ABC的是(
A.AB=2,BC=4,AC=7
B.AB=5,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AC=4
D.∠C=90°,AB=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長AB與DE的延長線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④SABE=SCDE;⑤SABE=SCEF . 其中正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方體木塊,棱長是15厘米,從它的八個(gè)頂點(diǎn)處各截去棱長分別為1,2,3,4,5,6,78厘米的小正方體,這個(gè)木塊剩下部分的表面積最少是_____平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀第(1)題的解答過程,然后再解第(2)題.
(1)已知多項(xiàng)式2x3﹣x2+m有一個(gè)因式是2x+1,求m的值.
解法一:設(shè)2x3﹣x2+m=(2x+1)(x2+ax+b),
則:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b
比較系數(shù)得 , 解得 , ∴
解法二:設(shè)2x3﹣x2+m=A(2x+1)(A為整式)
由于上式為恒等式,為方便計(jì)算了取 ,
=0,故
(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的每一個(gè)外角都是40°,則這個(gè)多邊形是(
A.六邊形
B.八邊形
C.九邊形
D.十邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,求|a+c|﹣|c﹣b|﹣|a+b|值.

查看答案和解析>>

同步練習(xí)冊(cè)答案