【題目】如圖①,老舊電視機(jī)屏幕的長(zhǎng)寬比為43,但是多數(shù)電影圖像的長(zhǎng)寬比為2.41,故在播放電影時(shí)電視機(jī)屏幕的上方和下方會(huì)有兩條等寬的黑色帶子.

1)若圖①中電視機(jī)屏幕為20寸(即屏幕對(duì)角線長(zhǎng)度):

①該屏幕的長(zhǎng)= 寸,寬= 寸;

②已知“屏幕浪費(fèi)比=黑色帶子的總面積:電視機(jī)屏幕的總面積”,求該電視機(jī)屏幕的浪費(fèi)比.

2 為了兼顧電影的收視需求,一種新的屏幕的長(zhǎng)寬比誕生了.如圖②,這種屏幕(矩形ABCD)恰好包含面積相等且長(zhǎng)寬比分別為43的屏幕(矩形EFGH)與2.41的屏幕(矩形MNPQ).求這種屏幕的長(zhǎng)寬比.(參考數(shù)據(jù):≈2.2,結(jié)果精確到0.1

【答案】1)①16 ,12;(21.8

【解析】

1)①根據(jù)電視機(jī)屏幕的長(zhǎng)寬比為43,設(shè)長(zhǎng)為4x,則寬為3x,再由勾股定理求出x的值,進(jìn)而可得出結(jié)論;

②設(shè)在該屏幕上播放長(zhǎng)寬比為2.41的視頻時(shí),視頻的寬為a寸(長(zhǎng)為16寸),求出a的值,得出黑色帶子的寬度,進(jìn)而得出其比值;

2)根據(jù)題意得出,得到,再由S矩形EFGHS矩形MNPQ,即可得到,進(jìn)而可得出結(jié)論.

解:(1)①∵電視機(jī)屏幕的長(zhǎng)寬比為43,

∴設(shè)長(zhǎng)為4x,則寬為3x,

∵電視機(jī)屏幕為20寸,

,解得x=4,

4x=16,3x=12,

∴該屏幕的長(zhǎng)為16寸,寬為12寸;

故答案為:1612

②設(shè)在該屏幕上播放長(zhǎng)寬比為2.41的視頻時(shí),視頻的寬為a寸(長(zhǎng)為16寸).

,解得 a.所以黑色帶子的寬的和=12

所以屏幕浪費(fèi)比=

2)由題意:,得:PQBCFGEF

因?yàn)?/span>S矩形EFGHS矩形MNPQ,所以BC·BC EF·EF

所以,∴≈1.8.答:這種屏幕的長(zhǎng)寬比約為1.8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,拋物線經(jīng)過點(diǎn)A、C,與x軸的另一交點(diǎn)為B

求拋物線的解析式;

設(shè)拋物線上任一動(dòng)點(diǎn)P的橫坐標(biāo)為m

①若點(diǎn)P在第二象限拋物線上運(yùn)動(dòng),過P軸于點(diǎn)N交直線AC于點(diǎn)M,當(dāng)直線AC把線段PN分成23兩部分時(shí),求m的值;

②連接CP,以點(diǎn)P為直角頂點(diǎn)作等腰直角三角形CPQ,當(dāng)點(diǎn)Q落在拋物線的對(duì)稱軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天空之城摩天輪,位于寧波市杭州灣新區(qū)歡樂世界.摩天輪高約126米(最高點(diǎn)到地面的距離).如圖,點(diǎn)O是摩天輪的圓心,AB是其垂直于地面的直徑,小明在地面C處用測(cè)角儀測(cè)得摩天輪最高點(diǎn)A的仰角為45°,測(cè)得圓心O的仰角為30°,求摩天輪的半徑.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是等邊三角形內(nèi)一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到線段,連接.若,則四邊形的面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:

時(shí)間段

(小時(shí)/周)

小麗抽樣

人數(shù)

小杰抽樣

人數(shù)

01

6

22

12

10

10

23

16

6

34

8

2

(每組可含最低值,不含最高值)

1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請(qǐng)說(shuō)明理由;

2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;

3)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,E,F,G,H分別是邊ABBC,CDDA的中點(diǎn).請(qǐng)你添加一個(gè)條件,使四邊形EFGH為矩形,應(yīng)添加的條件是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是為(0,3)、(-1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點(diǎn)C、A、A′,求此拋物線的解析式;

(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長(zhǎng);

(3)點(diǎn)M是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:點(diǎn)M在何處時(shí);△AMA′的面積最大?最大面積是多少?并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)團(tuán)委組織征文活動(dòng),并設(shè)立若干獎(jiǎng)項(xiàng).學(xué)校計(jì)劃派人根據(jù)設(shè)獎(jiǎng)情況去購(gòu)買三種獎(jiǎng)品共件,其中型獎(jiǎng)品件數(shù)比型獎(jiǎng)品件數(shù)的倍少件,型獎(jiǎng)品所花費(fèi)用不超過型獎(jiǎng)品所花費(fèi)用的倍.各種獎(jiǎng)品的單價(jià)如右表所示.如果計(jì)劃型獎(jiǎng)品買件,買件獎(jiǎng)品的總費(fèi)用是元.

型獎(jiǎng)品

型獎(jiǎng)品

型獎(jiǎng)品

單價(jià)()

1)試求之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)請(qǐng)你設(shè)計(jì)一種方案,使得購(gòu)買這三種獎(jiǎng)品所花的總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E是AD邊中點(diǎn),BD、CE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:

①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.

其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案