拋物線與x軸的兩個交點坐標(biāo)為________________。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=ax2+bx+c(a≠0)的圖象交y軸于(0,-15),且過點(3,0)和(4,2
79
);
(1)求拋物線y=ax2+bx+c(a≠0)的解析式;
(2)設(shè)拋物線的頂點為P,拋物線與x軸的兩個交點為A、B,以AB為直徑作圓M,過P作⊙M的切線,求所作切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.
①在第一象限內(nèi),這條拋物線上有一點P,AP交y軸于點D,當(dāng)OD=1.5時,試比較S△APC與S△AOC的大小.
②在x軸的上方,這條拋物線上是否存在點Pn,使得S△APnC=S△AOC?若存在,請求出點Pn的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(2m-1)x+4m-6.
(1)試說明對于每一個實數(shù)m,拋物線都經(jīng)過x軸上的一個定點;
(2)設(shè)拋物線與x軸的兩個交點A(x1,0)和B(x2,0)(x1<x2)分別在原點的兩側(cè),且A、B兩點間的距離小于6,求m的取值范圍;
(3)拋物線的對稱軸與x軸交于點C(
2m-1
2
,0)
,在(2)的條件下,試判斷是否存在m的值,使經(jīng)過點C及拋物線與x軸的一個交點的⊙M與y軸的正半軸相切于點D,且被x軸截得的劣弧與
CD
是等?若存在,求出所有滿足條件的m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•同安區(qū)質(zhì)檢)已知拋物線y=x2-mx+m-2;
(1)求證:拋物線y=x2-mx+m-2與x軸有兩個不同的交點;
(2)若m是整數(shù),拋物線y=x2-mx+m-2與x軸交于整數(shù)點,求m的值;
(3)在(2)的條件下,設(shè)拋物線的頂點為A,拋物線與x軸的兩個交點中右側(cè)交點為B.在坐標(biāo)軸上是否存在一點M,使得△MAB為等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(a+b)x+
c2
4
,a,b,c分別是∠A、∠B、∠C的對邊.
(1)求證:該拋物線與x軸必有兩個交點;
(2)設(shè)拋物線與x軸的兩個交點為P、Q,頂點為R,∠PQR=α,已知tanα=
5
,△ABC的周長為10,求拋物線的解析式;
(3)設(shè)直線y=ax-bc與拋物線交于點E、F,與y軸交于點M,若拋物線的對稱軸為x=a,O為坐標(biāo)原點,S△MOE:S△MOF=5:1,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案