【題目】如圖,矩形中,對角線與相交于點,過點作,過點作,兩線相交于點;
(1)求證:;
(2)連接,交于點,若于點,求的度數(shù).
【答案】(1)見解析;(2)120°
【解析】
(1)根據(jù)矩形的性質(zhì)可得AC=BD,OA=OC=AC,OB=OD=BD,從而得出OA=OB,然后根據(jù)菱形的判定定理可證四邊形OANB為菱形,從而得出結(jié)論;
(2)根據(jù)菱形的性質(zhì)可得BN=OB=BD,然后根據(jù)銳角三角函數(shù)求出∠NBD=60°,然后根據(jù)平行線的性質(zhì)和平角的定義即可求出結(jié)論.
(1)證明:∵四邊形ABCD為矩形
∴AC=BD,OA=OC=AC,OB=OD=BD
∴OA=OB
∵,
∴四邊形OANB為平行四邊形
∵OA=OB
∴四邊形OANB為菱形
∴;
(2)∵四邊形OANB為菱形
∴BN=OB=BD
∵
∴cos∠NBD=
∴∠NBD=60°
∵
∴∠DOA=∠NBD=60°
∴=180°-∠DOA=120°
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機調(diào)查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】佳潤商場銷售,兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示:
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲 毛利潤9萬元.
(1)該商場計劃購進,兩種品牌的教學設備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎上,減少種設備的購進數(shù)量,增加種設備的購進數(shù)量,已知種設備增加的數(shù)量 是種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的 總資金不超過69萬元,問種設備購進數(shù)量至多減少多少套?
(3)在(2)的條件下,該商場所能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有_____人,其中選擇類的人數(shù)有_____人;
(2)在扇形統(tǒng)計圖中,求類對應的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;
(3)若將這四類上學方式視為“綠色出行”,請估計該校選擇“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費悄況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是__________度;
(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形中,對角線、交于點,,,點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動時,另一個點也停止運動.連接,過點作,設運動時間為,
解答下列問題:
(1)當為何值時是等腰三角形?
(2)設五邊形面積為,試確定與的函數(shù)關(guān)系式;
(3)在運動過程中,是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由;
(4)在運動過程中,是否存在某一時刻使得平分,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,點D在⊙O上,AD⊥AB于點A, AD與 BC交于點E,F在DA的延長線上,且AF=AE.
(1)求證:BF是⊙O的切線;
(2)若AD=4,,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;
(3)在拋物線上是否存在異于的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com