【題目】如圖,已知△ABC是等邊三角形,D為AC邊上的一點(diǎn),DG∥AB,延長(zhǎng)AB到E,使BE=GD,連接DE交BC于F.
(1)求證:GF=BF;
(2)若△ABC的邊長(zhǎng)為a,BE的長(zhǎng)為b,且a,b滿足(a﹣7)2+(b﹣3)2=0,求BF的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長(zhǎng);
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以2cm/s秒的速度沿BC向點(diǎn)C運(yùn)動(dòng).P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.(如圖1)
(1)用含t的代數(shù)式表示下列線段長(zhǎng)度:
①PB=__________cm,②QB=_____cm,③CQ=_________cm.
(2)當(dāng)△PBQ的面積等于3時(shí),求t的值.
(3) (如圖2),若E為邊CD中點(diǎn),連結(jié)EQ、AQ.當(dāng)以A、B、Q為頂點(diǎn)的三角形與△EQC相似時(shí),直接寫出滿足條件的t的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)O坐標(biāo)原點(diǎn),直線l分別交x軸、y軸于A,B兩點(diǎn),OA<OB,且OA、OB的長(zhǎng)分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點(diǎn)P是y軸上的點(diǎn),點(diǎn)Q第一象限內(nèi)的點(diǎn).若以A、B、P、Q為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)為:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1與△ABC關(guān)于y軸對(duì)稱,請(qǐng)寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1, ;C1 ;
(2)△ABC的面積為 ;
(3)在y軸上畫出點(diǎn)P,使PB+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的邊長(zhǎng)為4,把三角板的直角頂點(diǎn)放置BC中點(diǎn)E處,三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點(diǎn)G、F.
(1)求證:△GBE∽△GEF.
(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫出自變量取值范圍.
(3)如圖2,連接AC交GF于點(diǎn)Q,交EF于點(diǎn)P.當(dāng)△AGQ與△CEP相似,求線段AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在x軸上,且關(guān)于y軸對(duì)稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若S△BEF=7,k1+3k2=0,則k1等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊后,使得點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.
(1)折疊后,DC的對(duì)應(yīng)線段是 ,CF的對(duì)應(yīng)線段是 .
(2)若∠1=55°,求∠2、∠3的度數(shù);
(3)若AB=6,AD=12,求△BC′F的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)醫(yī)學(xué)研究,使用某種抗生素治療心肌炎,人體內(nèi)每毫升血液中的含藥量不少于4微克時(shí),治療有效.如果一患者按規(guī)定劑量服用這種抗生素,服用后每毫升血液中的含藥量(微克)與服用后的時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示:
(1)如果上午8時(shí)服用該藥物,到 時(shí)該藥物的濃度達(dá)到最大值 微克/毫升;
(2)根據(jù)圖象求出從服用藥物起到藥物濃度最高時(shí)y與t之間的函數(shù)解析式;
(3)如果上午8時(shí)服用該藥物,到 時(shí)該藥物開始有效,有效時(shí)間一共是 小時(shí);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com