【題目】如圖,平行于x軸的直線AC分別交拋物線與于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則DE:BC=______.
【答案】
【解析】
設(shè)A點坐標(biāo)為(0,a),利用兩個函數(shù)解析式求出點B、C的坐標(biāo),然后求出BC的長度,再根據(jù)CD∥y軸,利用y1的解析式求出D點的坐標(biāo),然后利用y2求出點E的坐標(biāo),從而得到DE的長度,然后求出比值即可得解.
解:如圖,
設(shè)A點坐標(biāo)為(0,a),(a>0),
則x2=a,解得x=,
∴點B(,a),
∵,
則x=,
∴點C(,a),
∴BC=.
∵CD∥y軸,
∴點D的橫坐標(biāo)與點C的橫坐標(biāo)相同,為,
∴y1=()2=3a,
∴點D的坐標(biāo)為(,3a).
∵DE∥AC,
∴點E的縱坐標(biāo)為3a,
∴,
∴,
∴點E的坐標(biāo)為:(),
∴DE=,
∴;
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出y隨x的增大而減小的自變量x的取值范圍;
(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段BD上的一點,△ABC和△CDE是等邊三角形.
(1)求證:AD=BE.
(2)以點C為中心,將△CDE逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為ɑ(0°<ɑ<360°).
①當(dāng)ɑ為多少時DE∥AB?直接寫出結(jié)果,不要求證明.
②當(dāng)BC=6, CD=4時 ,設(shè)點E到直線AB的距離為y, 當(dāng)ɑ為多少時,點E到直線AB的距離最?求出最小值,并簡潔說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進中學(xué)生全面發(fā)展,學(xué)校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機抽取一張卡片是足球社團B的概率是 .
(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當(dāng)點P在BD上運動時(不包括B、D兩點),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】婁底市某樓盤準(zhǔn)備以每平方米5000元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.
(1)求平均每次下調(diào)的百分率;
(2)某人準(zhǔn)備以開盤均價購買一套150平方米的房子.開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送三年物業(yè)管理費.物業(yè)管理費為每平方米每月1.5元.請問哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點,連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫出y1> y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地鐵10號線某站點出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在海灣森林公園放風(fēng)箏.如圖所示,小明在A處,風(fēng)箏飛到C處,此時線長BC為40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測得C處的仰角為60°,求此時風(fēng)箏離地面的高度CE.(計算結(jié)果精確到0.1米,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com