【題目】如圖,在梯形中,,,,,,,垂足為點(diǎn).
(1)求的余弦值;
(2)設(shè),,用向量、表示.
【答案】(1);(2)
【解析】
(1)作DM⊥AB,垂足為M,易得:DM=AM=4,AD=4,BC=DM=4,從而得tan∠BAE=,設(shè)BF=x,則AF=2x,根據(jù)勾股定理,即可求解;
(2)易得:,,根據(jù),即可求解.
(1)作DM⊥AB,垂足為M,
∵在梯形中,,,
∴四邊形BCDM是矩形,
∴BM=CD=2,AM=AB-BM=6-2=4,
∵,
∴AMD是等腰直角三角形,
∴DM=AM=4,AD=4,BC=DM=4,
∴tan∠CBD=,
∵,
∴∠BEF+∠EBF=90°,
∵∠BEF+∠BAE=90°,
∴∠EBF =∠BAE,
∴tan∠BAE=,
設(shè)BF=x,則AF=2x,
∵在RtABF中,,
∴,解得:x=,
∴AF=2x=,
∴的余弦值=;
(2)∵AB=6,tan∠BAE=,
∴BE=3,
∵BC=4,
∴BE=,即: ,
∵CD=2,AB=6, ,
∴,
∵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的圓心在Rt△ABC的斜邊AB上,且⊙O分別與邊AC、BC相切于D、E兩點(diǎn),已知AC=3,BC=4,則⊙O的半徑r=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:
(1)(y+2)2-(3y-1)2=0;
(2)5(x-3)2=x2-9;
(3)t2-t+=0.
(4)2x2+7x+3=0(配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形內(nèi)接于,點(diǎn)是上兩點(diǎn),且,若,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)有研發(fā)、管理和操作三個(gè)小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說(shuō)法中不正確的是( )
操作組 | 管理組 | 研發(fā)組 | |
日工資(元/人) | 260 | 280 | 300 |
人數(shù)(人) | 4 | 4 | 4 |
A.團(tuán)隊(duì)平均日工資不變B.團(tuán)隊(duì)日工資的方差不變
C.團(tuán)隊(duì)日工資的中位數(shù)不變D.團(tuán)隊(duì)日工資的極差不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AC=6,BD=8.點(diǎn)E是AB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BC、CD、AD上.設(shè) AE=m.
(1)如圖①,當(dāng)m=1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫(xiě)作法)
(2)寫(xiě)出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“勻稱(chēng)三角形”,這條中線為“勻稱(chēng)中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱(chēng)三角形”.
①請(qǐng)判斷“勻稱(chēng)中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到△ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若△ACD是“勻稱(chēng)三角形”,求CD的長(zhǎng),并判斷CM是否為△ACD的“勻稱(chēng)中線”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工直徑為的同種規(guī)格零件,為了檢查兩臺(tái)機(jī)床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺(tái)機(jī)床的產(chǎn)品中各抽取件進(jìn)行檢測(cè),結(jié)果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺(tái)機(jī)床所加工零件直徑的平均數(shù)和方差;
(2)根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),你認(rèn)為哪一臺(tái)機(jī)床生產(chǎn)零件的穩(wěn)定性更好一些,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com