【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為勻稱三角形,這條中線為勻稱中線

1)如圖①,在RtABC中,∠C90°,ACBC,若RtABC勻稱三角形

①請(qǐng)判斷勻稱中線是哪條邊上的中線,

②求BCACAB的值.

2)如圖②,ABC是⊙O的內(nèi)接三角形,ABAC,∠BAC45°SABC2,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若ACD勻稱三角形,求CD的長(zhǎng),并判斷CM是否為ACD勻稱中線

【答案】1)① “勻稱中線”是BE,它是AC邊上的中線,②BCACAB;(2CDa,CM不是△ACD的“勻稱中線”.理由見解析.

【解析】

1)①先作出RtABC的三條中線AD、BECF,然后利用勻稱中線的定義分別驗(yàn)證即可得出答案;

②設(shè)AC2a,利用勾股定理分別把BC,AB的長(zhǎng)度求出來即可得出答案.

2)由②知:ACADCD,設(shè)AC,則AD2a,CD,過點(diǎn)CCHAB,垂足為H,利用的面積建立一個(gè)關(guān)于a的方程,解方程即可求出CD的長(zhǎng)度;假設(shè)CM是△ACD的“勻稱中線”,看能否與已知的定理和推論相矛盾,如果能,則說明假設(shè)不成立,如果不能推出矛盾,說明假設(shè)成立.

1)①如圖①,作RtABC的三條中線AD、BE、CF

∵∠ACB90°,

CF,即CF不是“勻稱中線”.

又在RtACD中,ADACBC,即AD不是“勻稱中線”.

∴“勻稱中線”是BE,它是AC邊上的中線,

②設(shè)AC2a,則CEaBE2a,

RtBCE中∠BCE90°,

BC,

RtABC中,AB,

BCACAB

2)由旋轉(zhuǎn)可知,∠DAE=∠BAC45°.ADABAC

∴∠DAC=∠DAE+BAC90°,ADAC,

RtACD是“勻稱三角形”.

由②知:ACADCD

設(shè)AC,則AD2a,CD

如圖②,過點(diǎn)CCHAB,垂足為H,則∠AHC90°,

∵∠BAC45°,

解得a2,a=﹣2(舍去),

判斷:CM不是△ACD的“勻稱中線”.

理由:假設(shè)CM是△ACD的“勻稱中線”.

CMAD2AM4,AM2

又在RtCBH中,∠CHB90°,CH ,BH4-,

這與∠AMC=∠B相矛盾,

∴假設(shè)不成立,

CM不是△ACD的“勻稱中線”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】非洲豬瘟疫情發(fā)生以來,豬肉市場(chǎng)供應(yīng)階段性偏緊和豬價(jià)大幅波動(dòng)時(shí)有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級(jí),增強(qiáng)豬肉供應(yīng)保障能力,國(guó)務(wù)院辦公廳于20199月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見》,某生豬飼養(yǎng)場(chǎng)積極響應(yīng)國(guó)家號(hào)召,努力提高生產(chǎn)經(jīng)營(yíng)管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場(chǎng)2019年每月生豬產(chǎn)量y(噸)與月份x,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.

1)請(qǐng)直接寫出當(dāng)x為整數(shù))和x為整數(shù))時(shí),yx的函數(shù)關(guān)系式;

2)若該飼養(yǎng)場(chǎng)生豬利潤(rùn)P(萬元/噸)與月份x,且x為整數(shù))滿足關(guān)系式:,請(qǐng)問:該飼養(yǎng)場(chǎng)哪個(gè)月的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,,,垂足為點(diǎn).

1)求的余弦值;

2)設(shè),,用向量、表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸正半軸上,點(diǎn)A與原點(diǎn)重合,點(diǎn)D的坐標(biāo)是 3,4),反比例函數(shù)yk≠0)經(jīng)過點(diǎn)C,則k的值為(  )

A.12B.15C.20D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過CCDAB于點(diǎn)D,CDAE于點(diǎn)F,過CCGAEBA的延長(zhǎng)線于點(diǎn)G

1)求證:CG是⊙O的切線.

2)求證:AFCF

3)若sinG0.6CF4,求GA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC與⊙O交于點(diǎn)F,弦AD平分∠BAC,DEAC,垂足為E點(diǎn).

1)求證:DE是⊙O的切線;

2)若⊙O的半徑為2,∠BAC60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤游戲時(shí),把質(zhì)地相同的兩個(gè)盤A、B分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各1次,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時(shí)甲勝;數(shù)字之積為奇數(shù)時(shí)乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.

1)用樹狀圖或列表的方法,求甲獲勝的概率;

2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?請(qǐng)判斷并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)yx2x2的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的圖形是函數(shù)y|x2x2|的圖象,已知過點(diǎn)D0,4)的直線ykx+4恰好與y|x2x2|的圖象只有三個(gè)交點(diǎn),則k的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案