【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))的對(duì)稱軸為x=1,與y軸的交點(diǎn)為c(0,4),y的最大值為5,頂點(diǎn)為M,過(guò)點(diǎn)D(0,1)且平行于x軸的直線與拋物線交于點(diǎn)A,B.
(Ⅰ)求該二次函數(shù)的解析式和點(diǎn)A、B的坐標(biāo);
(Ⅱ)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,求出所有點(diǎn)P的坐標(biāo).
【答案】(Ⅰ)y=﹣x2+2x+4,B(﹣1,1),A(3,1);(Ⅱ)P點(diǎn)坐標(biāo)為(3,1)或(﹣3,7)或()或().
【解析】
(Ⅰ)先確定頂點(diǎn)M的坐標(biāo),再設(shè)頂點(diǎn)式y=a(x﹣1)2+5,然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;在計(jì)算函數(shù)值為1所對(duì)應(yīng)的自變量的值即可得到A、B點(diǎn)的坐標(biāo);
(Ⅱ)先計(jì)算出CD=3,BD=1,AM=2,CM,AC=3,則利用勾股定理的逆定理得到△ACM為直角三角形,∠ACM=90°,然后分兩種情況討論:①當(dāng)時(shí),△MCP∽△BDC,即,解得PC=3,設(shè)此時(shí)P(x,﹣x+4),利用兩點(diǎn)間的距離公式得到x2+(﹣x+4﹣4)2=(3)2,求出x從而得到此時(shí)P點(diǎn)坐標(biāo);
②當(dāng)時(shí),△MCP∽△CDB,即,解得PC,利用同樣方法求出對(duì)應(yīng)的P點(diǎn)坐標(biāo).
(Ⅰ)根據(jù)題意得拋物線的頂點(diǎn)M的坐標(biāo)為(1,5),設(shè)拋物線的解析式為y=a(x﹣1)2+5,把C(0,4)代入y=a(x﹣1)2+5得:a+5=4,解得:a=﹣1,所以拋物線解析式為y=﹣(x﹣1)2+5,即y=﹣x2+2x+4;
當(dāng)y=1時(shí),﹣x2+2x+4=1,解得:x1=﹣1,x2=3,則B(﹣1,1),A(3,1);
(Ⅱ)CD=3,BD=1,AM ,CM,易得直線AC的解析式為y=﹣x+4.
∵CM2+AC2=AM2,∴△ACM為直角三角形,∠ACM=90°,∴∠BDC=∠MCP,分兩種情況討論:
①當(dāng)時(shí),△MCP∽△BDC,即,解得:PC=3,設(shè)此時(shí)P(x,﹣x+4),∴x2+(﹣x+4﹣4)2=(3)2,解得:x=±3,則此時(shí)P點(diǎn)坐標(biāo)為(3,1)或(﹣3,7);
②當(dāng)時(shí),△MCP∽△CDB,即,解得:PC,設(shè)此時(shí)P(x,﹣x+4),∴x2+(﹣x+4﹣4)2=()2,解得:x=±,則此時(shí)P點(diǎn)坐標(biāo)為()或();
綜上所述:滿足條件的P點(diǎn)坐標(biāo)為(3,1)或(﹣3,7)或()或().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一副三角板如圖①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖②).
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫(huà)出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y=﹣2x的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;
(2)如表是y與x的幾組對(duì)應(yīng)值
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ |
|
| 0 | ﹣ | ﹣ | m | … |
則m的值為_______;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)觀察圖象,寫(xiě)出該函數(shù)的兩條性質(zhì)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形紙片ABCD的邊長(zhǎng)為2,∠ABC=60°,將菱形ABCD沿EF,GH折疊,使得點(diǎn)B,D兩點(diǎn)重合于對(duì)角線BD上一點(diǎn)P(如圖2),則六邊形AEFCHG面積的最大值是( )
A. B. C. 2﹣ D. 1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,∠D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折到△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG,CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△CDE的頂點(diǎn)C點(diǎn)坐標(biāo)為C(1,﹣2),點(diǎn)D的橫坐標(biāo)為,將△CDE繞點(diǎn)C旋轉(zhuǎn)到△CBO,點(diǎn)D的對(duì)應(yīng)點(diǎn)B在x軸的另一個(gè)交點(diǎn)為點(diǎn)A.
(1)圖中,∠OCE等于∠_____;
(2)求拋物線的解析式;
(3)拋物線上是否存在點(diǎn)P,使S△PAE=S△CDE?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長(zhǎng)均為2,且AC與DE在同一直線上,開(kāi)始時(shí)點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com