精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1D=60°,則兩條斜邊的交點E到直角邊BC的距離是

【答案】1

【解析】

試題分析:過點EEHBC,垂足為H,根據AC=BC=+1D=60°,得BCD=30°,求得BD,可證明BDE∽△ACE,得=,從而得出BEAE,再由ACB=90°,得BHE∽△BCA,=,從而得出EH即可.

解:∵∠CBD=90°D=60°,

∴∠BCD=30°,

∴∠ACE=60°,

AC=BC=+1,

BD=AB=+1),

∵∠AEC=BED,

∴△BDE∽△ACE,

=,

=

BE=,AE=,

∵∠ACB=90°,

∴△BHE∽△BCA,

=,

=

EH=1,

故答案為1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在第1個△A1BC中,∠B30°,A1BCB;在邊A1B上任取一點D,延長CA1A2,使A1A2A1D,得到第2個△A1A2D;在邊A2D上任取一點E,延長A1A2A3,使A2A3A2E,得到第3個△A2A3E,…按此做法繼續(xù)下去,則第n個三角形中以An為頂點的底角度數是( 。

A.n75°B.n165°

C.n175°D.n85°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l1、l2、l3分別交直線l4于點A、B、C,交直線l5于點D、E、F,且l1l2l3已知EF:DF=5:8,AC=24.

(1)求AB的長;

(2)AD=4,BE=1時,求CF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學10人,身高在160厘米以上的女同學3人,乙班80人,其中身高在160厘米以上的男同學20人,身高在160厘米以上的女同學8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AD=AE,添加下列條件仍無法證明ABE≌△ACD的是 ( 。

A. AB=AC B. ADC=AEB C. B=C D. BE=CD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面內容:我們已經學習了《二次根式》和《乘法公式》,聰明的你可以發(fā)現:

,時,

,

,當且僅當時取等號.

請利用上述結論解決以下問題:

1)當時,的最小值為__________

2)當時,求的最小值.

3)請解答以下問題:

如圖所示,某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成,設垂直于墻的一邊長為米.若要圍成面積為200平方米的花圃,需要用的籬笆最少是__________米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我校對八年級學生的學習態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖和圖的統(tǒng)計圖(不完整).請根據圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了多少名學生;

2)通過計算達到C級的有多少人?并補全條形圖.

3)根據抽樣調查結果,請你估計我市近80000名八年級學生中大約有多少名學生學習態(tài)度達標(達標指的是學習興趣達到A級和B級)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,過點CCDABD,∠A30°,BD1,則AB的值是( 。.

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案