【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)判斷BE與CF的數(shù)量關(guān)系,并說明理由;
(2)如果AB=8,AC=6,求AE、BE的長.
【答案】(1)BE=CF,理由見解析;(2)AE=7,BE=1
【解析】
(1)連接BD、CD,由線段垂直平分線和角平分線的性質(zhì)得到DE=DF和BD=CD,再根據(jù)HL證明△BED≌△CFD,從而得到結(jié)論;
(2)根據(jù)AAS證明△AED≌△AFD,從而得到AE=AF,設(shè)BE=x,則CF=x,根據(jù)AE=AB﹣BE和AF=AC+CF得到關(guān)于x的方程,解方程,從而求得AE的長度.
(1)BE=CF,理由如下:
連接BD、CD,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED與Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)在△AED和△AFD中,
,
∴△AED≌△AFD(AAS),
∴AE=AF,
設(shè)BE=x,則CF=x,
∵AB=8,AC=6,AE=AB﹣BE,AF=AC+CF,
∴8﹣x=6+x,
解得:x=1,即BE=1,
∴AE=AB﹣BE=8﹣1=7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點.
(1)求的值;
(2)已知點,過點作平行于軸的直線,交直線于點,過點作平行于軸的直線,交函數(shù)的圖象于點.
①當(dāng)時,判斷線段與的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=640,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2;∠A2BC和∠A2CD的平分線交于點A3,則∠A5= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.
(1)如圖1,當(dāng)點E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張浩調(diào)查統(tǒng)計了他們家5月份每次打電話的通話時長,并將統(tǒng)計結(jié)果進行分組(每組含量最小值,不含最大值),將分組后的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖,則下列說法中不正確的是( )
A. 張浩家5月份打電話的總頻數(shù)為80次
B. 張浩家5月份每次打電話的通話時長在5﹣10分鐘的頻數(shù)為15次
C. 張浩家5月份每次打電話的通話時長在10﹣15分鐘的頻數(shù)最多
D. 張浩家5月份每次打電話的通話時長在20﹣25分鐘的頻率為6%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AF=BE,AE與DF相交于點O.
(1)求證:△DAF≌△ABE;
(2)寫出線段AE、DF的數(shù)量和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com