【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

【答案】見解析

【解析】

本題求小汽車是否超速,其實就是求BC的距離,直角三角形ABC中,有斜邊AB的長,有直角邊AC的長,那么BC的長就很容易求得,根據(jù)小汽車用2s行駛的路程為BC,那么可求出小汽車的速度,然后再判斷是否超速了.

解:在RtABC中,AC=30m,AB=50m;
據(jù)勾股定理可得:
BC=40m
∴小汽車的速度為v==20m/s=20×3.6km/h=72km/h);
72km/h)>70km/h);
∴這輛小汽車超速行駛.
答:這輛小汽車超速了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù),當(dāng)時,函數(shù)有最大值5.

(1)求此二次函數(shù)圖象與坐標軸的交點;

(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點,從左到右,四個交點依次記為,當(dāng)以為直徑的圓與軸相切時,求的值.

(3)若點(2)中翻折得到的拋物線弧部分上任意一點,若關(guān)于m的一元二次方程 恒有實數(shù)根時,求實數(shù)k的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題有( )

兩點之間線段最短;
到角的兩邊距離相等的點在角的平分線上;

過一點有且只有一條直線與已知直線平行;
垂直于同一直線的兩條直線平行;

的弦AB,CD交于點P,

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DEABC的邊BC上,連接ADAE. AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設(shè),另一個作為命題的結(jié)論,構(gòu)成三個命題:(1)①②③;(2)①③②;(3)②③.

1)以上三個命題是真命題的為(直接答題號)

2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七(1)班的學(xué)習(xí)小組學(xué)習(xí)“線段中點內(nèi)容時,得到一個很有意思的結(jié)論,請跟隨他們一起思考.

1)發(fā)現(xiàn):

如圖1,線段,點在線段上,當(dāng)點是線段和線段的中點時,線段的長為_________;若點在線段的延長線上,其他條件不變(請在圖2中按題目要求將圖補充完整),得到的線段與線段之間的數(shù)量關(guān)系為_________.

2)應(yīng)用:

如圖3,現(xiàn)有長為40米的拔河比賽專用繩,其左右兩端各有一段()磨損了,磨損后的麻繩不再符合比賽要求. 已知磨損的麻繩總長度不足20. 小明認為只利用麻繩和一把剪刀(剪刀只用于剪斷麻繩)就可以得到一條長20米的拔河比賽專用繩. 小明所在學(xué)習(xí)小組認為此法可行,于是他們應(yīng)用“線段中點”的結(jié)論很快做出了符合要求的專用繩,請你嘗試著“復(fù)原”他們的做法:

①在圖中標出點、點的位置,并簡述畫圖方法;

②請說明①題中所標示點的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、、在同一條直線上,連接.

1)請找出圖2中的全等三角形,并說明理由(說明:結(jié)論中不得含有圖中未標識的字母);

2垂直嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:

①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)a2,b時,分別求代數(shù)式a22ab+b2和(ab2的值;

2)當(dāng)a=﹣5,b=﹣3時,a22ab+b2  ab2(填,”“

3)觀察(1)(2)中代探索代數(shù)式a22ab+b2和(ab2有何數(shù)量關(guān)系,并把探索的結(jié)果寫出來:a22ab+b2  ab2(填,”“

4)利用你發(fā)現(xiàn)的規(guī)律,求135.722×135.7×35.7+35.72的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,DGBC且平分BCDEABE,DFACF

1)判斷BECF的數(shù)量關(guān)系,并說明理由;

2)如果AB=8,AC=6,求AE、BE的長.

查看答案和解析>>

同步練習(xí)冊答案