【題目】如圖,AH是⊙O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為半徑OH上一點,點E,F(xiàn)分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
【答案】
(1)解:如圖1,連接OE,
∵OA=OE,
∴∠EAO=∠AEO,
∵AE平分∠FAH,
∴∠EAO=∠FAE,
∴∠FAE=∠AEO,
∴AF∥OE,
∴∠AFE+∠OEF=180°,
∵AF⊥GF,
∴∠AFE=∠OEF=90°,
∴OE⊥GF,
∵點E在圓上,OE是半徑,
∴GF是⊙O的切線
(2)解:∵四邊形ABCD是矩形,CD=10,
∴AB=CD=10,∠ABE=90°,
設(shè)OA=OE=x,則OB=10﹣x,
在Rt△OBE中,∠OBE=90°,BE=5,
由勾股定理得:OB2+BE2=OE2,
∴(10﹣x)2+52=x2,
∴ ,
,
∴⊙O的直徑為
【解析】(1)根據(jù)OA=OE和AE平分∠FAH,易證得AF∥OE,再由FG⊥AF,從而證得OE⊥GF,即可得出結(jié)論。
(2)由四邊形ABCD是矩形,可求出AB的長及∠ABE=90°,已知EB=5,因此連接OE,在Rt△OBE中,設(shè)圓的半徑為x,可表示出OB的長,根據(jù)勾股定理即可求得圓的半徑和直徑。
【考點精析】利用勾股定理的概念和矩形的性質(zhì)對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=﹣ x2+bx+c的對稱軸是x=2,且經(jīng)過點(6,0).
(1)求拋物線C1的解析式;
(2)將拋物線C1向下平移2個單位后得到拋物線C2 , 如圖,直線y=kx﹣2k+1交拋物線C2于A,B兩點(點A在點B的左邊),交拋物線C2的對稱軸于點C,M(xA , 3),xA表示點A橫坐標(biāo),求證:AC=AM;
(3)在(2)的條件下,請你參考(2)中的結(jié)論解決下列問題:
①若CM=AM,求 的值;
②請你探究:在拋物線C2上是否存在點P,使得PO+PC取得最小值?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正三角形AEF的頂點A重合,將△AEF繞其頂點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時,∠BAE的大小可以是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有分別標(biāo)有數(shù)字1,2,3,4四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再從中任取一球,請用畫樹狀圖或列表格的方法求出兩個球上的數(shù)字之和為偶數(shù)的概率.
(3)若設(shè)計一種游戲方案:從中任取兩球,兩個球上的數(shù)字之差的絕對值為1為甲勝,否則為乙勝,請問這種游戲方案設(shè)計對甲、乙雙方公平嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:
設(shè)(其中、、、均為整數(shù)),則有.
,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)、、、均為正整數(shù)時,若,用含、的式子分別表示、,得: , ;
(2)利用所探索的結(jié)論,找一組正整數(shù)、、、填空: ;
(3)若,且、、均為正整數(shù),求的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A城氣象臺測得臺風(fēng)中心在A城正西方向600km的B處,以每小時200km的速度向北偏東60°的方向移動,距臺風(fēng)中心500km的范圍內(nèi)是受臺風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺風(fēng)的影響?為什么?
(2)若A城受到這次臺風(fēng)的影響,那么A城遭受這次臺風(fēng)影響有多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖2,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1 , 求線段EF1長度的最大值與最小值的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某油箱容量為60L的汽車,加滿汽油后行駛了100km時,油箱中的汽油大約消耗了,如果加滿汽油后汽車行駛的路程為x(km),油箱中剩油量為y(L),則y與x之間的函數(shù)解析式和自變量取值范圍分別是( )
A. y=0.12x,x>0
B. y=60-0.12x,x>0
C. y=0.12x,0≤x≤500
D. y=60-0.12x,0≤x≤500
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com