【題目】如圖,⊙O的直徑AB=20,P是AB上(不與點A,B重合)的任一點,點C,D為⊙O上的兩點,若∠APD=∠BPC,則稱∠DPC為直徑AB的“回旋角”,利用圓的對稱性可知:“回旋角”∠DPC的度數(shù)與弧CD的度數(shù)相等.
(1)若∠DPC為直徑AB的“回旋角”,且∠DPC=100°,求∠APD的大小;
(2)若直徑AB的“回旋角”為90°,且△PCD的周長為,求AP的長.
【答案】(1)40°;(2)或
【解析】
(1)根據“回旋角”的定義可得∠APD=∠BPC,結合∠DPC=100°可求∠APD的大;
(2)如圖三,延長DP交⊙O于點E,連結CE、OC、OD,根據勾股定理求出,可得PC+PD=16,然后在Rt△DPC中,利用勾股定理構造方程求出PD=2,PC=14,或PD=14,PC=2,然后分情況討論,利用△DPA∽△BPE列出比例式,分別求出相應的AP的長即可.
解:(1)∵∠DPC為直徑AB的“回旋角”,
∴∠APD=∠BPC,
又∵∠DPC=100°,
∴∠APD+∠BPC=180°-100°=80°,
∴∠APD=40°;
(2)如圖三,∠DPC=90°,延長DP交⊙O于點E,連結CE、OC、OD,
∵“回旋角”∠DPC的度數(shù)與弧CD的度數(shù)相等,
∴∠DOC=90°,
∴,
∵△PCD的周長為,
∴PC+PD=16,
設PD=x,則PC=(16-x),
在Rt△DPC中,PD2+PC2=CD2,即,
解得:x1=2,x2=14,
∴PD=2,PC=14,或PD=14,PC=2,
∵∠DOC=90°,∠DPC=90°,
∴∠DEC=45°,
∴PE=PC,
①當PD=2,PE=PC=14時,連結AD,BE,
∵∠DAB=∠DEB,∠DPA=∠BPE,
∴△DPA∽△BPE,
∴,即,
解得:(已舍去不合題意的值),
②當PD=14,PE=PC=2時,
同理可得:.
綜上,AP的長為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,M是AB的中點,P是BC邊上的動點,連結PM,以點P為圓心,PM長為半徑作⊙P.當⊙P與正方形ABCD的邊相切時,BP的長為( )
A. 3B. 或6C. D. 3或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市面上販售的防曬產品標有防曬指數(shù),而其對抗紫外線的防護率算法為:防護率,其中.
請回答下列問題:
(1)廠商宣稱開發(fā)出防護率的產品,請問該產品的應標示為多少?
(2)某防曬產品文宣內容如圖所示.
請根據與防護率的轉換公式,判斷此文宣內容是否合理,并詳細解釋或完整寫出你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場某種新商品每件進價是,在試銷期間發(fā)現(xiàn),當每件商品售價為元時,每天可銷售件,當每件商品售價高于元時,每漲價元,日銷售量就減少件.據此規(guī)律,請回答:
(1)當每件商品售價定為元時,每天可銷售多少件商品,商場獲得的日盈利是多少?
(2)在上述條件不變,商品銷售正常的情況下,每件商品的銷售價定為多少元時,商場日盈利可達到元?(提示:盈利售價進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點E,F,使得AE=CF,連接AF,BE相交于點P.(1)則∠APB=______度;(2)當點E從點A運動到點C時,則動點P經過的路徑長為________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小琴的父母承包了一塊荒山地種植一批梨樹,今年收獲一批金溪密梨,小琴的父母打算以m元/斤的零售價銷售5000斤密梨;剩余的5000(m+1)斤密犁以比零售價低1元的批發(fā)價批給外地客商,預計總共可賺得55 000元的毛利潤.
(1)求小琴的父母今年共收獲金溪密梨多少斤?
(2)若零售金溪密梨平均每天可售出200斤,每斤盈利2元.為了加快銷售和獲得較好的售價,采取了降價措施,發(fā)現(xiàn)銷售單價每降低0.1元,平均每天可多售出40斤,應降價多少元?每天銷售利潤為600元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c經過A(﹣2,﹣4),O(0,0),B(2,0)三點.
(1)求拋物線y=ax2+bx+c的解析式;
(2)若點M是該拋物線對稱軸上的一點,求AM+OM的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點都在小方格的格點上.
(1)點A的坐標是 ;點C的坐標是 ;
(2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對應邊的比為1:2,請在網格中畫出△A1B1C1;
(3)△A1B1C1的面積為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com