【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點都在小方格的格點上.
(1)點A的坐標(biāo)是 ;點C的坐標(biāo)是 ;
(2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對應(yīng)邊的比為1:2,請在網(wǎng)格中畫出△A1B1C1;
(3)△A1B1C1的面積為 .
【答案】(1)(2,8),(6,6);(2)見解析;(3).
【解析】
(1)直接利用已知點位置即可得出各點的坐標(biāo);
(2)利用位似圖形的性質(zhì)得出對應(yīng)點位置即可畫出△A1B1C1;
(3)根據(jù)三角形面積求法即可得出答案.
解:(1)由平面直角坐標(biāo)系中,△ABC的位置得:
點A的坐標(biāo)是:(2,8);點C的坐標(biāo)是:(6,6);
(2)如圖所示:△A1B1C1,即為所求;
(3)∵A1(1,4),B1(0,3),C1(3,3)
∴△A1B1C1的面積為: ×3×1=.
故答案為:(1)(2,8),(6,6);(2)見解析;(3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,把和按圖1擺放,點C與E點重合,點B、C、E、F始終在同一條直線上,,,,,,如圖2,從圖1的位置出發(fā),以每秒1個單位的速度沿CB方向勻速移動,同時,點P從A出發(fā),沿AB以每秒1個單位向點B勻速移動,AC與的直角邊相交于Q,當(dāng)P到達終點B時,同時停止運動連接PQ,設(shè)移動的時間為解答下列問題:
在平移的過程中,當(dāng)點D在的AC邊上時,求AB和t的值;
在移動的過程中,是否存在為等腰三角形?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小凱和同學(xué)帶著皮尺,去測量楊大爺家露臺遮陽蓬的寬度,如圖,由于無法直接測量,小凱便在樓前面的地面上選擇了一條直線EF,通過在直線EF上選點觀測,發(fā)現(xiàn)當(dāng)他位于N點時,他的視線從M點通過露臺D點正好落在遮陽蓬A點處:當(dāng)他位于Q點時,視線從P點通過露臺D點正好落在遮陽蓬B點處,這樣觀測到兩個點A,B間的距離即為遮陽蓬的寬.已知AB∥CD∥EF,點C在AG上,AG、DE、PQ、MN均為垂直于EF,MN=PQ,露臺的寬CD=GE,測得GE=5米,EN=13.2米,QN=6.2,請你根據(jù)以上信息,求出遮陽蓬的寬AB是多少米?(結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2.
上述4個判斷中,正確的是( )
A.①② B.①④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于點A,四邊形ABCD為正方形,P為射線BM上一動點,連結(jié)CP,將CP繞點C順時針方向旋轉(zhuǎn)90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A,B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為點M,BM=OM=2,點A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的表達式;
(2)直線AB交x軸于點D,過點D作直線l⊥x軸,如果直線l上存在點P,坐標(biāo)平面內(nèi)存在點Q.使四邊形OPAQ是矩形,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣3(a+1)x+2a+3(a≠0)與直線y=x﹣1交于點A和點B(點A在點B的左側(cè)),AB=5.
(1)求證:該拋物線必過一個定點;
(2)求該拋物線的解析式;
(3)設(shè)直線x=m與該拋物線交于點E(x1,y1),與直線AB交于點F(x2,y2),當(dāng)滿足y1+y2>0且y1y2<0時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為8,以AB為直徑的圓交BC于點F.以C為圓心,CF長為半徑作圖,D是⊙C上一動點,E為BD的中點,當(dāng)AE最大時,BD的長為( 。
A. B. C. D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,再過點A作半圓的切線,與半圓切于點F,與CD交于點E,則S梯形ABCE=_____cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com