【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:△DAC∽△DBA;
(2)過點C作⊙O的切線CE交AD于點E,求證:CE=AD;
(3)若點F為直徑AB下方半圓的中點,連接CF交AB于點G,且AD=6,AB=3,求CG的長.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)利用AB為⊙O的直徑和AD是⊙O的切線,判斷出∠ACD=∠BAD=90°,即可得出結(jié)論;
(2)利用切線長定理判斷出AE=CE,進而得出∠DAC=∠ECA,再用等角的余角相等判斷出∠D=∠DCE,得出DE=CE,即可得出結(jié)論;
(3)先求出tan∠ABD的值,進而求出GH=2CH,進而得出BC=3BH,再求出BC建立方程求出BH,進而得出GH,即可得出結(jié)論.
(1)證明:∵AB是⊙O直徑,
∴∠ACD=∠ACB=90°,
∵AD是⊙O的切線,
∴∠BAD=90°,
∴∠ACD=∠BAD=90°,
∵∠D=∠D,
∴△DAC∽△DBA.
(2)證明:∵EA,EC是⊙O的切線,
∴AE=CE,
∴∠DAC=∠ECA,
∵∠ACD=90°,
∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,
∴∠D=∠DCE,
∴DE=CE,
∴AD=AE+DE=CE+CE=2CE,
∴CE=AD.
(3)解:在Rt△ABD中,AD=6,AB=3,
∴tan∠ABD==2,
如圖,過點G作GH⊥BD于H,
∴tan∠ABD==2,
∴GH=2BH,
∵點F是直徑AB下方半圓的中點,
∴∠BCF=45°,
∴∠CGH=45°,
∴CH=GH=2BH,
∴BC=BH+CH=3BH,
在Rt△ABC中,tan∠ABC==2,
∴AC=2BC,
根據(jù)勾股定理得AC2+BC2=AB2,
∴4BC2+BC2=9,
∴BC=,
∴3BH=,
∴BH=,
∴GH=2BH=,
在Rt△CHG中,∠BCF=45°,
∴CG=GH=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學(xué)生做家務(wù)的時間來評價他們在活動中的表現(xiàn).老師調(diào)查了全班50名學(xué)生在這次活動中做家務(wù)的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).
請根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動中學(xué)生做家務(wù)時間的中位數(shù)所在的組是____________;
(2)補全頻數(shù)分布直方圖;
(3)該班的小明同學(xué)這一周做家務(wù)2小時,他認為自己做家務(wù)的時間比班里一半以上的同學(xué)多,你認為小明的判斷符合實際嗎?請用適當?shù)慕y(tǒng)計知識說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CA=CB,∠ACB=α.點P 是平面內(nèi)不與點A,C 重合的任意一點,連接AP,將線段AP 繞點P 逆時針旋轉(zhuǎn)α得到線段DP,連接AD,BD,CP.
(1)猜想觀察:如圖1,當α=60°時,的值是________,直線BD與直線CP相交所成的較小角的度數(shù)是________.
(2)類比探究:如圖2,當α=90°時,請寫出的值及直線BD與直線CP相交所成的較小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題:如圖3,當α=90°時,若點 E,F 分別是 CA,CB 的中點,點 P 在FE的延長線上,P,D,C三點在同一直線上,AC與BD相交于點M,DM=2-,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣4).
(1)求該二次函數(shù)的解析;
(2)若點P、Q同時從A點出發(fā),以每秒1個單位長度的速度分別沿AB、AC邊運動,其中一點到達端點時,另一點也隨之停止運動.
①當點P運動到B點時,在x軸上是否存在點E,使得以A、E、Q為頂點的三角形為等腰三角形?若存在,請求出E點的坐標;若不存在,請說明理由.
②當P、Q運動到t秒時,△APQ沿PQ翻折,點A恰好落在拋物線上D點處,請直接寫出t的值及D點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在坐標系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2016次,點B的落點依次為B1,B2,B3,…,則B2016的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與拋物線y=﹣x2+bx+c交于A,B兩點,點A在y軸上,點B在x軸上.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上存在一點P,使得∠ABP=90°,求出點P坐標;
(3)點E是拋物線對稱軸上一點,點F是拋物線上一點,是否存在點E和點F使得以點E,F,B,O為頂點的四邊形是平行四邊形?若存在,求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com