【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,交AC邊于點(diǎn)E.過點(diǎn)D作⊙O的切線,交AC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G,連接DE.
(1)求證:BD=CD;
(2)若∠G=40°,求∠AED的度數(shù).
(3)若BG=6,CF=2,求⊙O的半徑.
【答案】
(1)證明:連接AD,
∵AB為直徑,
∴∠ACB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD
(2)解:連接OD,
∵GF是切線,OD是半徑,
∴OD⊥GF,
∴∠ODG=90°,
∵∠G=40°,
∴∠GOD=50°,
∵OB=OD,
∴∠OBD=65°,
∵點(diǎn)A、B、D、E都在⊙O上,
∴∠ABD+∠AED=180°,
∴∠AED=115°
(3)解:∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠ABC=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∴△GOD∽△GAF,
∴ = ,
∴設(shè)⊙O的半徑是r,則AB=AC=2r,
∴AF=2r﹣2,
∴ = ,
∴r=3,
即⊙O的半徑是3
【解析】(1)連接AD,根據(jù)圓周角定理得出AD⊥BC,根據(jù)等腰三角形的性質(zhì)得出即可;(2)連接OD,根據(jù)切線的性質(zhì)求出∠ODG=90°,求出∠BOD、∠ABC,根據(jù)圓內(nèi)接四邊形求出即可;(3)求出△ODG∽△AFG,得出比例式,即可求出圓的半徑.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“兩直線平行,內(nèi)錯(cuò)角的平分線互相平行”是真命題嗎?如果是,請(qǐng)給出證明;如果不是,請(qǐng)舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)(1)班和(2)班分別有一男一女共4名學(xué)生報(bào)名參加學(xué)校文藝匯演主持人的選拔.
(1)若從報(bào)名的4名學(xué)生中隨機(jī)選1名,則所選的這名學(xué)生是女生的概率是 .
(2)若從報(bào)名的4名學(xué)生中隨機(jī)選2名,用樹狀圖或表格列出所有可能的情況,并求出這2名學(xué)生來自同一個(gè)班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次“探究性學(xué)習(xí)”課中,李老師設(shè)計(jì)了如下數(shù)表:
n | 2 | 3 | 4 | 5 | … |
a | 22﹣1 | 32﹣1 | 42﹣1 | 52﹣1 | … |
b | 4 | 6 | 8 | 10 | … |
c | 22+1 | 32+1 | 42+1 | 52+1 | … |
(1)用含自然數(shù)n(n>1)的代數(shù)式表示:a,b,c.
(2)當(dāng)c=101時(shí),求n的值;
(3)用等式表示a、b、c之間的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若10m=5,10n=3,則102m+3n= .
【答案】675.
【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,
故答案為:675.
點(diǎn)睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運(yùn)算方法,可得102m×103n=(10m)2×(10n)3,最后把10m=5,10n=2代入化簡(jiǎn)后的算式,求出102m+3n的值是多少即可.
【題型】填空題
【結(jié)束】
18
【題目】計(jì)算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y= x經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com