【題目】如圖所示是一個(gè)紙杯,它的母線(xiàn)延長(zhǎng)后形成的立體圖形是圓錐,該圓錐的側(cè)面展開(kāi)圖是扇形OAB,經(jīng)測(cè)量,紙杯開(kāi)口圓的直徑為6cm,下底面直徑為4cm,母線(xiàn)長(zhǎng)EF=9cm,求扇形OAB的圓心角及這個(gè)紙杯的表面積.(結(jié)果保留根號(hào)和π)
【答案】解:由題意可知: =6πcm, =4π,設(shè)∠AOB=n,AO=R,則CO=R﹣9, 由弧長(zhǎng)公式得:l= ,
∴ ,
解得:n=40,R=27,
故扇形OAB的圓心角是40度.
∵R=27,R﹣9=18,
∴S扇形OCD= ×4π×18=36π(cm2),
S扇形OAB= ×6π×27=81π(cm2),
紙杯側(cè)面積=S扇形OAB﹣S扇形OCD=81π﹣36π=45π(cm2),
紙杯底面積=π22=4π(cm2)
紙杯表面積=45π+4π=49π(cm2).
【解析】(1)設(shè)∠AOB=n°,AO=R,則CO=R﹣9,利用圓錐的側(cè)面展開(kāi)圖扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)作為相等關(guān)系列方程,并聯(lián)立成方程組求解即可(2)求紙杯的側(cè)面積即為扇環(huán)的面積,需要用大扇形的面積減去小扇形的面積.紙杯表面積=S紙杯側(cè)面積+S紙杯底面積 .
【考點(diǎn)精析】通過(guò)靈活運(yùn)用幾何體的展開(kāi)圖和扇形面積計(jì)算公式,掌握沿多面體的棱將多面體剪開(kāi)成平面圖形,若干個(gè)平面圖形也可以圍成一個(gè)多面體;同一個(gè)多面體沿不同的棱剪開(kāi),得到的平面展開(kāi)圖是不一樣的,就是說(shuō):同一個(gè)立體圖形可以有多種不同的展開(kāi)圖;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從A向D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線(xiàn)段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于任意一點(diǎn)P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱(chēng)d(P)為點(diǎn)P的坐標(biāo)距離.
(1)已知:點(diǎn)P(3,﹣4),求點(diǎn)P的坐標(biāo)距離d(P)的值.
(2)如圖,四邊形OABC為正方形,且點(diǎn)A、B在第一象限,點(diǎn)C在第四象限.
①求證:d(A)=d(C).
②若OC=2,且滿(mǎn)足d(A)+d(C)=d(B)+2,求點(diǎn)B坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片中,cm,cm。點(diǎn)在邊上,將沿折疊,得,連接, .
(1)當(dāng)點(diǎn)落在邊上時(shí), ;
(2)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求的長(zhǎng);
(3)當(dāng)分別滿(mǎn)足下列條件時(shí),求相應(yīng)的的長(zhǎng):
①;②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,4)三點(diǎn),其中a,b滿(mǎn)足關(guān)系式a=+2.若在第二象限內(nèi)有一點(diǎn)P(m,1),使四邊形ABOP的面積與三角形ABC的面積相等,則點(diǎn)P的坐標(biāo)為( )
A. (-3,1) B. (-2,1) C. (-4,1) D. (-2.5,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)有理數(shù)的乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰(shuí)算的又快又對(duì),有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對(duì)于以上兩種解法,你認(rèn)為誰(shuí)的解法較好?
(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫(xiě)出來(lái);
(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)75°,點(diǎn)E的對(duì)應(yīng)點(diǎn)N恰好落在OA上,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出 平面內(nèi)不在同一條直線(xiàn)上的三點(diǎn)確定一個(gè)面,那么平面內(nèi)的四點(diǎn)(任意三點(diǎn)均不在同一直線(xiàn)上),能否在同一個(gè)面上呢?
初步思考
設(shè)不在同一條直線(xiàn)上的三點(diǎn)A、B、C確定的圓為⊙O.
(1)當(dāng)C、D在線(xiàn)段AB的同側(cè)時(shí).
如圖①,若點(diǎn)D在⊙O上,此時(shí)有∠ACB=∠ADB,理由是 .
如圖②,若點(diǎn)D在⊙O內(nèi),此時(shí)有∠ACB∠ADB;
如圖③,若點(diǎn)D在⊙O外,此時(shí)有∠ACB∠ADB(填“=”、“>”、“<”)
由上面的探究,請(qǐng)直接寫(xiě)出A、B、C、D四點(diǎn)在同一個(gè)圓上的條件: .
類(lèi)比學(xué)習(xí)
(2)仿照上面的探究思路,請(qǐng)?zhí)骄浚寒?dāng)C、D在線(xiàn)段AB的異側(cè)時(shí)的情形.
由上面的探究,請(qǐng)用文字語(yǔ)言直接寫(xiě)出A、B、C、D四點(diǎn)在同一個(gè)圓上的條件: .
拓展延伸
(3)如何過(guò)圓上一點(diǎn),僅用沒(méi)有刻度的直尺,作出已知直徑的垂線(xiàn)? 已知:如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,求作:CN⊥AB
作法:①連接CA、CB
②在CB上任取異于B、C的一點(diǎn)D,連接DA,DB;
③DA與CB相交于E點(diǎn),延長(zhǎng)AC、BD,交于F點(diǎn);
④連接F、E并延長(zhǎng),交直徑AB與M;
⑤連接D、M并延長(zhǎng),交⊙O于N,連接CN,則CN⊥AB.
請(qǐng)安上述作法在圖④中作圖,并說(shuō)明CN⊥AB的理由.(提示:可以利用(2)中的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過(guò)旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底部G點(diǎn)為BC的中點(diǎn),求矮建筑物的高CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com