【題目】某中學(xué)開展陽光體育一小時活動,按學(xué)校實際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運動項目,為了解學(xué)生最喜歡哪一種運動項目,隨機抽取了一部分學(xué)生進行調(diào)查,井將調(diào)查結(jié)果繪制成如下兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題.

1)在扇形統(tǒng)計圖中,B所在扇形的圓心角是多少度?;

2)將條形統(tǒng)計圖補充完整;

3)若該中學(xué)有1200名學(xué)生,喜歡籃球運動的學(xué)生約有多少名?

【答案】1)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角是54°;(2)補全圖形見解析;(3)喜歡籃球運動的學(xué)生約有180名.

【解析】

1)先求B項目對應(yīng)的百分比,再乘以360°即可;

2)先計算被調(diào)查的總?cè)藬?shù),再計算C項目的人數(shù),然后補全統(tǒng)計圖;

3)根據(jù)樣本估計總體,用該中學(xué)的學(xué)生總數(shù)1200乘以最喜歡籃球運動項目所占的百分比即可.

解:(1)∵B項目對應(yīng)的百分比為1﹣(40%+20%+25%)=15%,

∴在扇形統(tǒng)計圖中,“B”所在扇形的圓心角是360°×15%54°;

2)∵被調(diào)查的總?cè)藬?shù)為80÷40%200(人),

C項目的人數(shù)為200﹣(80+30+50)=40(人),

補全圖形如下:

3)若該中學(xué)有1200名學(xué)生,則喜歡籃球運動的學(xué)生約有1200×15%180(名).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖①是一個四邊形紙條 ABCD,其中 ABCD,EF 分別為邊 AB,CD 上的兩個點,將紙條 ABCD 沿 EF 折疊得到圖②,再將圖②沿 DF 折疊得到圖③,若在圖③中,∠FEM=26°,則∠EFC 的度數(shù)為(

A.52°B.64°C.102°D.128°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:對于(x1)(x3)>0,這類不等式,我們可以進行下面的解題思路由有理數(shù)的乘法法則兩數(shù)相乘,同號得正,可得(1或(2從而將未知的一元二次不等式轉(zhuǎn)化為學(xué)過的一元一次不等式組,分別解這兩個不等式組,即可求得原不等式的解集,即:解不等式組(1)得x3,解不等式組(2)得x1,所以(x1)(x3)>0的解集為x3x1

請根據(jù)以上材料回答下面問題:

1)直接寫出(x2)(x5)<0的解集;

2)仿照上述材料,求0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個外角

實踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標明相應(yīng)字母保留作圖痕跡,不寫作法

1DAC的平分線AM;

2作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE、CF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AC,BD相交于點OAE平分∠BADBC于點E,若∠CAE15°,則∠BOE的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗成績?nèi)缦卤硭荆?/span>

測驗類別

平時測驗

期中測驗

期末測驗

1

2

3

成績

100

106

106

105

110

(1)該同學(xué)上學(xué)期5次測驗成績的眾數(shù)為 ,中位數(shù)為

(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為 ;

(3)該同學(xué)上學(xué)期的總成績是將平時測驗的平均成績、期中測驗成績、期末測驗成績按照2:3:5的比例計算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線過平行四邊形對角線的交點,分別交、、,那么陰影部分的面積是平行四邊形面積的(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)為非零常數(shù)).

)若對稱軸是直線

求二次函數(shù)的解析式

二次函數(shù)為實數(shù))圖象的頂點在軸上的值

)把拋物線向上平移個單位得到新的拋物線,,的圖像落在軸上方的部分對應(yīng)的的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段, 于點,且, 是射線上一動點, 、分別是, 的中點,過點 , 的圓與的另一交點(點在線段上),連結(jié),

)當(dāng)時,則的度數(shù)為__________

)在點的運動過程中,當(dāng)時,取四邊形一邊的兩端點和線段上一點,若以這三點為頂點的三角形是直角三角形,當(dāng)時,則的值為__________

查看答案和解析>>

同步練習(xí)冊答案