若y=ax2+bx+c,則由表格中信息可知y與x之間的函數(shù)關(guān)系式是(  )
x -1 0 1
ax2 1
ax2+bx+c 8 3
A、y=x2-4x+3
B、y=x2-3x+4
C、y=x2-3x+3
D、y=x2-4x+8
分析:由圖表可以得到:當x=-1時,y=ax2+bx+c=8;當x=0時,y=ax2+bx+c=3;當x=1時,ax2=1.根據(jù)以上條件代入得到:a-b+c=8,c=3,a=1,就可以求出函數(shù)的解析式.
解答:解:將x=1,ax2=1代入y=ax2得a=1.
將(-1,8),(0,3)分別代入y=x2+bx+c中得:
1-b+c=8
c=3

解得
b=-4
c=3
;
∴函數(shù)解析式是:y=x2-4x+3.
故選A.
點評:本題是一個圖表信息題,根據(jù)圖表得到有關(guān)信息,進而考查二次函數(shù)關(guān)系式的求法即待定系數(shù)法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若方程ax2+bx+c=0(a≠0)中,a+b+c=0且a-b+c=0,則方程ax2+bx+c=0的根是( 。
A、1,0B、-1,0C、1,-1D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出當y大于0時x的取值范圍;
(3)x為何值時,y隨x的增大而增大;
(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)方程ax2+bx+c=0的兩個根是:x1=1,x2=3.
(2)不等式ax2+bx+c>0的解集是:1<x<3.
(3)y隨x的增大而減小的自變量x的取值范圍是:x>2.
(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,則k的取值范圍是:k<2.
其中正確結(jié)論有
(1)(2)(3)(4)
(1)(2)(3)(4)
.(填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=ax2+bx+c(a≠0)經(jīng)過(1,0)點,其頂點為(2,2),若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案