考點:一次函數(shù)圖象上點的坐標特征,等腰直角三角形
專題:規(guī)律型
分析:先求出直線y=kx+b的解析式,求出直線與x軸、y軸的交點坐標,求出直線與x軸的夾角的正切值,分別過等腰直角三角形的直角頂點向x軸作垂線,然后根據(jù)等腰直角三角形斜邊上的高線與中線重合并且等于斜邊的一半,利用正切值列式依次求出三角形的斜邊上的高線,即可得到A3的坐標,進而得出各點的坐標的規(guī)律.
解答:解:∵A
1(1,1),A
2(
,
)在直線y=kx+b上,
∴
,
解得
,
∴直線解析式為y=
x+
;
設直線與x軸、y軸的交點坐標分別為N、M,
當x=0時,y=
,
當y=0時,
x+
=0,解得x=-4,
∴點M、N的坐標分別為M(0,
),N(-4,0),
∴tan∠MNO=
=
=
,
作A
1C
1⊥x軸與點C
1,A
2C
2⊥x軸與點C
2,A
3C
3⊥x軸與點C
3,
∵A
1(1,1),A
2(
,
),
∴OB
2=OB
1+B
1B
2=2×1+2×
=2+3=5,
tan∠MNO=
=
=
,
∵△B
2A
3B
3是等腰直角三角形,
∴A
3C
3=B
2C
3,
∴A
3C
3=
=(
)
2,
同理可求,第四個等腰直角三角形A
4C
4=
=(
)
3,
依此類推,點A
n的縱坐標是(
)
n-1.
故答案為:
(
)
n-1.
點評:本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.