如圖,⊙O與⊙P相交于B、C兩點,BC是⊙P的直徑,且把⊙O分成度數(shù)的比為1:2的兩條弧,A是
BmC
上的動點(不與B、C重合),連接AB、AC分別交⊙P于D、E兩點.
(1)當(dāng)△ABC是銳角三角形(圖①)時,判斷△PDE的形狀,并證明你的結(jié)論;
(2)當(dāng)△ABC是直角三角形、鈍角三角形時,請你分別在圖②、圖③中畫出相應(yīng)的圖形(不要求尺規(guī)作圖),并按圖①標(biāo)記字母;
(3)在你所畫的圖形中,(1)的結(jié)論是否成立?請就鈍角的情況加以證明.
(1)△PDE是等邊三角形,連DC.
∵弦BC把⊙O分成度數(shù)的比為1:2的兩條弧,
BC
的度數(shù)為120°,
∴∠BAC=60°
又∵BC為⊙P的直徑,∴∠BDC=90°,
又∵∠A=60°,
∴∠DCA=30°,
∴∠DPE=60°
又∵PD=PE,
∴△PDE是等邊三角形;

(2)如圖②、圖③即為所畫圖形;

(3)圖②和圖③中△PDE仍為等邊三角形.
證明:如圖③,連接BE、DC
∵BC為⊙P的直徑,
∴∠BDC=90°
又∵∠A=60°,
∴∠ACD=30°
又∵四邊形DBEC是⊙P的內(nèi)接四邊形,
∴∠DBE=∠DCA=30°,∠DPE=60°
又∵PD=PE,
∴△PDE是等邊三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一條弦.則tan∠OBE為( 。
A.
4
3
B.
3
4
C.
4
5
D.
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖所示,P為直徑AB上一點,EF,CD為過點P的兩條弦,且∠DPB=∠EPB;
(1)求證:
CE
=
DF
;
(2)求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,點A、B、C在⊙O上,且∠C=110°,則∠AOB=(  )
A.110°B.120°C.140°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的弦AB平分半徑OC,交OC于P點,已知PA和PB的長分別是方程x2-12x+24=0的兩根,則此圓的直徑為( 。
A.8
2
B.6
2
C.4
2
D.2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:在⊙O中∠A=25°,∠E=30°,∠BOD的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,弦AB、CD相交于點O,連結(jié)AD、BC,在不添加輔助線的情況下,請在圖中找出一對相等的角,它們是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);(2)若OC=3,AB=8,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為______度.

查看答案和解析>>

同步練習(xí)冊答案