【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,經(jīng)過點O的直線l將四邊形分成兩部分,直線l與OC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ [θ,a ]
(理解)若點D與點A重合,則這個操作過程為FZ [45°,3];
(嘗試)
(1)若點D恰為AB的中點(如圖2),求θ;
(2)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上(如圖3),求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.
【答案】(1)30°;(2)答案見解析.
【解析】
(1)先根據(jù)ASA定理得出△BCD≌△AFD ,故可得出CD= FD ,即點D為Rt△COF斜邊CF的中點,由折疊可知,OD= OC,故OD= OC= CD,△OCD為等邊三角形,∠COD = 60°,根據(jù)等邊三角形三線合一的性質(zhì)可得出結(jié)論;
(2)根據(jù)點E在四邊形OABC的邊AB上可知AB⊥直線l,根據(jù)由折疊可知,OD=OC=3,DE= BC=2.再由θ= 45°, AB⊥直線l,得出△ADE為等腰直角三角形,故可得出OA的長,由此可得出結(jié)論.
(1)連接CD并延長,交0A延長線于點F,在△BCD與△AFD中,,∴ △BCD≌△AFD(ASA)∴CD= FD,即點D為Rt△COF斜邊CF的中點,∴OD=CF=CD,又由折疊可知,OD=OC,∴OD=OC=CD,∴△OCD為等邊三角形,∠COD=60°,∴θ=∠COD=30°;
(2)∵點E在四邊形OABC的邊AB上,∴AB⊥直線l,由折疊可知,OD=OC=3,DE=BC=2,∵θ=45°,AB⊥直線l,∴△ADE為等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5,由圖可知,當(dāng)0<a<5時,點E落在四邊形OABC的外部.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于點B,C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線沿BA方向平移,平移后的拋物線經(jīng)過點C時,與x軸的另一交點為E,其頂點為F,對稱軸與x軸的交點為H.
(1)求a,c的值;
(2)連結(jié)OF,試判斷△OEF是否為等腰三角形,并說明理由;
(3)現(xiàn)將一足夠大的三角板的直角頂點Q放在射線AF或射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P,是否存在這樣的點Q,使以點P,Q,E為頂點的三角形與△POE全等?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過坐標(biāo)原點O,點A(6,﹣6 ),且以y軸為對稱軸.
(1)求拋物線的解析式;
(2)如圖2,過點B(0,﹣ )作x軸的平行線l,點C在直線l上,點D在y軸左側(cè)的拋物線上,連接DB,以點D為圓心,以DB為半徑畫圓,⊙D與x軸相交于點M,N(點M在點N的左側(cè)),連接CN,當(dāng)MN=CN時,求銳角∠MNC的度數(shù);
(3)如圖3,在(2)的條件下,平移直線CN經(jīng)過點A,與拋物線相交于另一點E,過點A作x軸的平行線m,過點(﹣3,0)作y軸的平行線n,直線m與直線n相交于點S,點R在直線n上,點P在EA的延長線上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線段PR的中點K恰好落在拋物線上,求Q點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了錯題,從下列四個條件:
①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖所示),現(xiàn)有如下四種選法,你認(rèn)為其中錯誤的是( 。
A. ①② B. ①③ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F
(1)求證: ;
(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;
(3)設(shè)PE=x,△PBD的面積為S,求S與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.
(1)求tan∠DBC的值;
(2)求證:四邊形OBEC是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com