【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)交軸于、兩點(diǎn),(點(diǎn)在點(diǎn)的左側(cè))與軸交于點(diǎn),連接.
(1)求點(diǎn)、點(diǎn)和點(diǎn)的坐標(biāo);
(2)如圖2,若點(diǎn)為第四象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,的面積為.求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),,;(2);;(3),,,,
【解析】
(1))求當(dāng)時(shí)和當(dāng)時(shí)的解即可(2)根據(jù)點(diǎn)的位置結(jié)合二次函數(shù)的圖象和性質(zhì)求和,從而求得面積的最大值(3)先求出函數(shù)的對(duì)稱軸,設(shè)點(diǎn)的坐標(biāo),再根據(jù)等腰三角形性質(zhì)分情況討論求解.
(1)當(dāng)時(shí),,解得,,
又∵在的左側(cè),
∴,,
當(dāng)時(shí),,∴.
(2)∵的橫坐標(biāo)為,在拋物線上.
∴的縱坐標(biāo)為,∴,
∵點(diǎn)在第四象限,∴,,
連接,
∵,
,
.
∴
.
∵,∴當(dāng)時(shí),
.
(3)二次函數(shù)的對(duì)稱軸是
設(shè)點(diǎn)P的坐標(biāo)為,又因?yàn)?/span>
分三種情況討論:
當(dāng)時(shí),
解得,此時(shí),
當(dāng)時(shí),
解得,此時(shí),,
當(dāng)時(shí),
解得,此時(shí),
,,,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,點(diǎn)C是⊙O上一動(dòng)點(diǎn),過點(diǎn)C作⊙O直徑CD,過點(diǎn)B作BE⊥CD于點(diǎn)E.已知AB=6cm,設(shè)弦AC的長(zhǎng)為x cm,B,E兩點(diǎn)間的距離為y cm(當(dāng)點(diǎn)C與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0).
小冬根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小冬的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 0. 99 | 1. 89 | 2. 60 | 2. 98 | m | 0 |
經(jīng)測(cè)量m的值為_____;(保留兩位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖
象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BE=2時(shí),AC的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下 5 個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率 P 為 ;
(2)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率 P2 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請(qǐng)用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)交軸于、兩點(diǎn),(點(diǎn)在點(diǎn)的左側(cè))與軸交于點(diǎn),連接.
(1)求點(diǎn)、點(diǎn)和點(diǎn)的坐標(biāo);
(2)如圖2,若點(diǎn)為第四象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,的面積為.求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面說法正確的是個(gè)數(shù)有( )
①如果三角形三個(gè)內(nèi)角的比是1:2:3,那么這個(gè)三角形是直角三角形;
②如果三角形的一個(gè)外角等于與它相鄰的一個(gè)內(nèi)角,則這么三角形是直角三角形;
③如果一個(gè)三角形的三條高的交點(diǎn)恰好是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一個(gè)內(nèi)角等于另兩個(gè)內(nèi)角之差,那么這個(gè)三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.
A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,.點(diǎn)從向以每秒個(gè)單位的速度運(yùn)動(dòng),以為一邊在的右下方作正方形.同時(shí)垂直于的直線也從向以每秒個(gè)單位的速度運(yùn)動(dòng),當(dāng)經(jīng)過________秒時(shí).直線和正方形開始有公共點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富同學(xué)們的課余生活,我校將在周末舉行“親近大自然”的社會(huì)實(shí)踐活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是千鶴湖公園”的問卷調(diào)查,要求學(xué)生只能從“A(華中工委紀(jì)念館),B(洋馬菊花園),C(千鶴湖公園),D(丹頂鶴自然保護(hù)區(qū))”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如圖的兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)解答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,求B所占的圓心角度數(shù);
(4)若該校有3600名學(xué)生,試估計(jì)該校最想去千鶴湖公園的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com