【題目】如圖,在四邊形ABCD中,∠ABC90°,ABBC2,E,F分別是AD,CD的中點,連結BE,BF,EF.若四邊形ABCD的面積為6,則△BEF的面積為( )

A. 2B. C. D. 3

【答案】C

【解析】

連接AC,BEF的垂線,利用勾股定理可得AC,易知ABC的面積,可得BGADC的面積,三角形ABC與三角形ACD同底,利用面積比可得出他們的高之比,而GH又是ACDAC為底的高的一半,可得GH,易得BH,由中位線的性質(zhì)可得EF的長,利用三角形的面積公式可得結果.

連接AC,過B點作EF的垂線交AC于點G,交EF于點H,

EFAC

BGAC

∵∠ABC=90°AB=BC=2,

AC==4,

ABC為等腰三角形

∴△ABG,BCG為等腰直角三角形,

AG=BG=2,

SABC=·AB·BC=22=4,

SACD=2,

=2,

GH=BG=

BH=,

又∵EF=AC=2,

SBEF=·EF·BH=2=.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,每個小方格都是邊長為的正方形,的頂點均在格點上,點的坐標是

先將沿軸正方向向上平移個單位長度,再沿軸負方向向左平移個單位長度得到,畫出,點坐標是________

繞點逆時針旋轉,得到,畫出,并求出點的坐標是________;

我們發(fā)現(xiàn)點關于某點中心對稱,對稱中心的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師提出一個問題用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC”.

小美的作法如下:

①分別以點A,B為圓心,大于AB作弧,交于點M,N;

②作直線MN,交AB于點O;

③以點O為圓心,OA為半徑,作半圓,交直線MN于點C;

④連結AC,BC

所以,ABC即為所求作的等腰直角三角形

請根據(jù)小美的作法,用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC,并保留作圖痕跡.這種作法的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表中有兩種移動電話計費方式:

說明:月使用費固定收取,主叫不超限定時間不再收費,主叫超時部分加收超時費,被叫免費.

1)若李明某月主叫通話時間為700分鐘,則他按方式一計費需 元,按方式二計費需 元(用含的代數(shù)式表示);若他按方式一計費需60元,則主叫通話時間為 分鐘;

2)若方式二中主叫超時費(元/分鐘),是否存在某主叫通話時間(分鐘),按方式一和方式二的計費相等?若存在,請求出的值;若不存在,請說明理由;

3)若主叫時間為750分鐘時,兩種方式的計費相等,直接寫出的值為 ;請你通過計算分析后,直接給出當月主叫通話時間(分鐘)滿足什么條件時,選擇方式二省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:

跳繩數(shù)/個

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;

(2)這個班同學這次跳繩成績的眾數(shù)是 個,中位數(shù)是 個;

(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在邊長為的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當∠AFQ=∠BGM=∠CHN=∠DEP=45°時,求正方形MNPQ的面積。

小明發(fā)現(xiàn):分別延長QE、MF、NG、PH交FA、GB、HC、ED的延長線于點R、S、T、W可得△RQF、△SMG、△TNH、△WPE是四個全等的等腰直角三角形(如圖2)

請回答:

(1)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙,不重疊),則這個新的正方形的邊長為__________;

(2)求正方形MNPQ的面積.

參考小明思考問題的方法,解決問題:

如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點D、E、F作BC、AC、AB的垂線,得到等邊△RPQ,若,則AD的長為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,把一張矩形紙片ABCD沿對角線BD折疊,將重合部分(△BFD)剪去,得到△ABF和△EDF.

(1)求證:FB=FD;

(2)求證:△ABF≌△EDF;

(3)將△ABF與△EDF不重合地拼在一起,可拼成特殊三角形和特殊四邊形,請你按照下列要求將拼圖補畫完整(圖2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點DAB邊上的一點,

(1)試說明:∠EAC=∠B

(2)若AD=15,BD=36,求DE的長.

(3)若點DA、B之間移動,當點D為 時,ACDE互相平分.

(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列語句,畫出圖形.

(1)如圖1,已知四點.

①畫直線;

②連接線段,相交于點;

③畫射線,相交于點

(2)如圖2,有一個燈塔分別位于海島的南偏西30°和海島的南偏西60°的方向上,通過畫圖可推斷燈塔的位置可能是四點中的____點.

查看答案和解析>>

同步練習冊答案