【題目】閱讀材料:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫(xiě),即.例如:的一種形式的配方;所以,,,的三種不同形式的配方(即余項(xiàng)分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)).

請(qǐng)根據(jù)閱讀材料解決下列問(wèn)題:

1)比照上面的例子,寫(xiě)出三種不同形式的配方;

2)已知,求的值;

3)已知,求的值.

【答案】1;;;(219;(34

【解析】

1)根據(jù)材料中的三種不同形式的配方,余項(xiàng)分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng),可解答;
2)將x2+y2-6x+10y+34配方,根據(jù)平方的非負(fù)性可得xy的值,可解答;
3)通過(guò)配方后,求得a,b,c的值,再代入代數(shù)式求值.

解:(1的三種配方分別為:

;

(或;

2)∵x2+y2-6x+10y+34=x2-6x+9+y2+10y+25=x-32+y+52=0
x-3=0,y+5=0,
x=3,y=-5,
3x-2y=3×3-2×-5=19

3

,,

,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了建設(shè)國(guó)家級(jí)衛(wèi)生城市.市政部門(mén)決定搭配AB兩種園藝造型共50個(gè)擺放在市區(qū),現(xiàn)有3490盆甲種花卉和2950盆乙種花卉可供使用,已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆,搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90.

1)問(wèn)符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(lái).

2)若搭配一個(gè)A種造型的費(fèi)用是800元,搭配一個(gè)B種造型的費(fèi)用是960元,試說(shuō)明(1)中哪種方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,且滿(mǎn)足式子.

1)求出的值;

2)①在軸的正半軸上存在一點(diǎn),使的面積等于的面積的一半,求出點(diǎn)的坐標(biāo);

②在坐標(biāo)軸的其它位置是否存在點(diǎn),使的面積等于的面積的一半仍然成立,若存在,直接寫(xiě)出其他符合條件的點(diǎn)的坐標(biāo);

3)如圖2,過(guò)點(diǎn)軸交軸于點(diǎn),點(diǎn)為線(xiàn)段延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),連接,平分,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)是4,的平分線(xiàn)交于點(diǎn),若點(diǎn)、分別是上的動(dòng)點(diǎn),則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,,,,直線(xiàn)過(guò)點(diǎn),且與軸交于點(diǎn).

1)求點(diǎn)、點(diǎn)的坐標(biāo);

2)試說(shuō)明:

3)若點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),在軸上是否存在另一個(gè)點(diǎn),使以、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用我們學(xué)過(guò)的知識(shí),可以得出下面這個(gè)優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱(chēng)性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美.

.請(qǐng)你證明這個(gè)等式;

.如果,請(qǐng)你求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點(diǎn)G在菱形對(duì)角線(xiàn)AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]

(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;

(2)知識(shí)探究:

①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段EC、CF與BC的數(shù)量關(guān)系(不需要寫(xiě)出證明過(guò)程);

②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過(guò)程中,若,探究線(xiàn)段EC、CF與BC的數(shù)量關(guān)系;

(3)問(wèn)題解決:如圖丙,已知菱形的邊長(zhǎng)為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長(zhǎng)度。

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形中,平分,交于點(diǎn),且,延長(zhǎng)的延長(zhǎng)線(xiàn)交于點(diǎn),連接.下列結(jié)論:①;②是等邊三角形;③;④;⑤中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線(xiàn)AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案