【題目】已知拋物線y=ax2+bx+3經(jīng)過A(3,0)B(1,0)兩點(diǎn)(如圖1),頂點(diǎn)為M.

(1)a、b的值;

(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)MQ間所夾的曲線MQ掃過的區(qū)域的面積;

(3)設(shè)直線y=2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.

【答案】1a=1b=4;(2MQ掃過的面積為;(3

【解析】

1)將AB兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值.

2)連接MQ、DN后,由圖可以發(fā)現(xiàn)曲線MQ掃過的面積正好是MQND的面積;連接QD,則MQND的面積是兩倍的△MQD的面積,所以這道題實(shí)際求的是△MQD的面積;由(1)的拋物線解析式,不難求出頂點(diǎn)M的坐標(biāo),聯(lián)立直線OM和直線CD的解析式可以求出點(diǎn)D的坐標(biāo);以OQ為底,M、D兩點(diǎn)的橫坐標(biāo)差的絕對(duì)值為高即可得△MQD的面積,則此題可求.

3)在平移過程中,拋物線的開口方向和大小是不變的,即二次項(xiàng)系數(shù)不變;拋物線的頂點(diǎn)始終在直線OM上,根據(jù)直線OM的解析式(y=x)可表達(dá)出拋物線頂點(diǎn)的坐標(biāo)(h,h),可據(jù)此先設(shè)出平移后的拋物線解析式;若求平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí)頂點(diǎn)橫坐標(biāo)的取值范圍,那么就要考慮到兩個(gè)關(guān)鍵位置:

①拋物線對(duì)稱軸右側(cè)部分經(jīng)過C點(diǎn)時(shí),拋物線頂點(diǎn)橫坐標(biāo)h的值;

②拋物線對(duì)稱軸左側(cè)部分與直線CD恰好有且只有一個(gè)交點(diǎn)時(shí),h的值;

解:(1)將A-3,0),B-1,0)代入拋物線y=ax2+bx+3中,得:

,

解得:a=1b=4

2)連接MQ、QD、DN,

由圖形平移的性質(zhì)知:QNMD,即四邊形MQND是平行四邊形;

由(1)知,拋物線的解析式:y=x2+4x+3=x+22-1,則點(diǎn)M-2,-1),

當(dāng)x=0時(shí),y=3,

Q03);

設(shè)直線OM的解析式為y=kx,

-2k=-1,

k=

∴直線OMy=x,聯(lián)立直線y=-2x+9,得:

,

解得

D);

曲線QM掃過的區(qū)域的面積:S=SMQND=2SMQD;

3)由于拋物線的頂點(diǎn)始終在y=x上,可設(shè)其坐標(biāo)為(h,h),設(shè)平移后的拋物線解析式為y=x-h2+h;

當(dāng)平移后拋物線對(duì)稱軸右側(cè)部分經(jīng)過點(diǎn)C0,9)時(shí),有:

h2+h=9,解得:h=(依題意,舍去正值)

當(dāng)平移后的拋物線與直線y=-2x+9只有一個(gè)交點(diǎn)時(shí),依題意:

,

消去y,得:x2-2h-2x+h2+h-9=0

則:△=2h-22-4h2+h-9=-10h+40=0,解得:h=4,

結(jié)合圖形,當(dāng)平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),hh4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙三個(gè)球迷決定通過抓鬮來(lái)確定誰(shuí)得到僅有的一張球票,他們準(zhǔn)備了三張紙片,紙片上分別寫上,然后將紙片折疊成外觀一致的紙團(tuán),抓到紙片的人可以得到球票.

1)如果讓甲從三張紙團(tuán)中先抓一張,則甲一次就抓到寫的紙片的概率為 (直接寫出答案);

2)抓鬮前,乙產(chǎn)生了疑問:誰(shuí)先抓?先抓的人會(huì)不會(huì)抓中的機(jī)會(huì)比別人大?你認(rèn)為乙的懷疑有沒有道理?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線yx+4與拋物線y=﹣x2+bx+cbc是常數(shù))交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)By軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C

1)求該拋物線的解析式;

2P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),

①如圖2,若點(diǎn)P在直線AB上方,連接OPAB于點(diǎn)D,求的最大值;

②如圖3,若點(diǎn)Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)EF恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形ABCD中,∠B=60°,PQ同時(shí)從B出發(fā),以每秒1個(gè)單位長(zhǎng)度分別沿B→A→D→CB→C→D方向運(yùn)動(dòng)至相遇時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為t(),△BPQ的面積為S(平方單位),St的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的個(gè)數(shù)有( )

當(dāng)t=4秒時(shí),S=②AD=4;當(dāng)4≤t≤8時(shí),S=;當(dāng)t=9秒時(shí),BP平分梯形ABCD的面積.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計(jì),當(dāng)每輛車的月租金為3000元時(shí),可全部租出.每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加1輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2)當(dāng)每輛車的租金定為多少元時(shí),租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)到306600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B90°,AB6cm,BC8cm,點(diǎn)PA點(diǎn)開始沿AB邊向點(diǎn)B1cm/秒的速度移動(dòng),同時(shí)點(diǎn)QB點(diǎn)開始沿BC邊向點(diǎn)C2cm/秒的速度移動(dòng),且當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止移動(dòng).

1P,Q兩點(diǎn)出發(fā)幾秒后,可使PBQ的面積為8cm2

2)設(shè)PQ兩點(diǎn)同時(shí)出發(fā)移動(dòng)的時(shí)間為t秒,PBQ的面積為Scm2,請(qǐng)寫出St的函數(shù)關(guān)系式,并求出PBQ面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形OABC的邊長(zhǎng)為5,且tanAOC,點(diǎn)E是線段BC的中點(diǎn),過點(diǎn)A、E的拋物線yax2+bx+c與邊AB交于點(diǎn)D

1)求點(diǎn)A和點(diǎn)E的坐標(biāo);

2)連結(jié)DE,將BDE沿著DE翻折.

①當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'恰好落在線段AC上時(shí),求點(diǎn)D的坐標(biāo);

②連接OBBB',請(qǐng)直接寫出此時(shí)該拋物線二次項(xiàng)系數(shù)a   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在平行四邊形中,分別為的中點(diǎn),連結(jié)

求證:

1

2)若,證明:四邊形是菱形。

查看答案和解析>>

同步練習(xí)冊(cè)答案