【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時(shí)從B出發(fā),以每秒1個(gè)單位長(zhǎng)度分別沿B→A→D→C和B→C→D方向運(yùn)動(dòng)至相遇時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的個(gè)數(shù)有( )
①當(dāng)t=4秒時(shí),S=;②AD=4;③當(dāng)4≤t≤8時(shí),S=;④當(dāng)t=9秒時(shí),BP平分梯形ABCD的面積.
A.1B.2C.3D.4
【答案】A
【解析】
先判斷△BPQ為等邊三角形,然后表示出△BPQ的面積可判斷①;由圖像可判斷②;用待定系數(shù)法求出EF的解析式可判斷③;設(shè)梯形高為h,分別表示出梯形的面積和△BCP的面積可判斷④.
解:如圖2所示,動(dòng)點(diǎn)運(yùn)動(dòng)過(guò)程分為三個(gè)階段:
(1)OE段,函數(shù)圖象為拋物線,運(yùn)動(dòng)圖形如圖1-1所示.
此時(shí)點(diǎn)P在線段AB上、點(diǎn)Q在線段BC上運(yùn)動(dòng).
∵BP=BQ=t,∠B=60°,
∴△BPQ為等邊三角形,
作PH⊥BQ于H,
∵sinB=,
∴PH= t,
∴S=.
由函數(shù)圖象可知,當(dāng)t=4秒時(shí),S=4,故選項(xiàng)①正確.
(2)EF段,函數(shù)圖象為直線,運(yùn)動(dòng)圖形如圖1-2所示.
此時(shí)點(diǎn)P在線段AD上、點(diǎn)Q在線段BC上運(yùn)動(dòng).
由函數(shù)圖象可知,此階段運(yùn)動(dòng)時(shí)間為4s,
∴AD=1×4=4,故選項(xiàng)②正確.
設(shè)直線EF的解析式為:S=kt+b,將E(4,4)、F(8,8)代入得:
,
解得,
∴S=t,故選項(xiàng)③錯(cuò)誤.
(3)FG段,函數(shù)圖象為直線,運(yùn)動(dòng)圖形如圖1-3所示.
此時(shí)點(diǎn)P、Q均在線段CD上運(yùn)動(dòng).
設(shè)梯形高為h,則S梯形ABCD=(AD+BC)h=(4+8)h=6h;
當(dāng)t=9s時(shí),DP=1,則CP=3,
∴CP:CD=3:4,
作DE⊥BC于E,PF⊥BC于F,則PF∥DE,
∴PF:DE=CP:CD=3:4,
∴PF=,
∴S△BCP=S△BCD=3h,
∴S△BCP=S梯形ABCD,即BP平分梯形ABCD的面積,故選項(xiàng)④正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM,求∠CAM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒l個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步提高全民“節(jié)約用水”意識(shí),某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動(dòng),李明隨機(jī)抽查了所住小區(qū)x戶家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖:
(1)求x并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這x戶家庭的月平均用水量;并估計(jì)李明所住小區(qū)620戶家庭中月用水量低于月平均用水量的家庭戶數(shù);
(3)從月用水量為5m3和9m3的家庭中任選兩戶進(jìn)行用水情況問(wèn)卷調(diào)查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x﹣2)2+m的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)A(3,0),B(1,0)兩點(diǎn)(如圖1),頂點(diǎn)為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線MQ掃過(guò)的區(qū)域的面積;
(3)設(shè)直線y=2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)沒(méi)有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1、A2、……、An、An+1是x軸上的點(diǎn),且OA1=A1A2=A2A3=……=AnAn+1=1,分別過(guò)點(diǎn)A1、A2、……、An、An+1作x軸的垂線交直線y=2x于點(diǎn)B1、B2、……、Bn、Bn+1,連接A1B2、B1A2、A2B3、B2A3、……、AnBn+1、BnAn+1,依次相交于點(diǎn)P1、P2、P3、……、Pn,△A1B1P1、△A2B2P2、……、△AnBnPn的面積依次為S1、S2、……、Sn,則Sn為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑是5,AB是⊙O的弦,直徑CD⊥AB于點(diǎn)E.
(1)點(diǎn)F是⊙O上任意一點(diǎn),請(qǐng)僅用無(wú)刻度的直尺畫出∠AFB的角平分線;
(2)若AC=8,試求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海防哨所發(fā)現(xiàn)在它的北偏西,距離為的處有一艘船,該船向正東方向航行,經(jīng)過(guò)到達(dá)哨所東北方向的處,則該船的航速為每小時(shí)___.(精確到)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com