【題目】如圖,在菱形ABCD中,∠B= 60°.
(1)如圖①.若點E、F分別在邊AB、AD上,且BE=AF,求證:△CEF是等邊三角形.
(2)小明發(fā)現(xiàn),當(dāng)點E、F分別在邊AB、AD上,且∠CEF=60°時,△CEF也是等邊三角形,
并通過畫圖驗證了猜想;小麗通過探索,認為應(yīng)該以CE= EF為突破口,構(gòu)造兩個全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了△CEF是等邊三角形.請你根據(jù)小倩的方法,寫出完整的證明過程.
【答案】(1)見解析;(2)見解析.
【解析】
(1)易證△BEC≌△AFC,即可得證;(2)先證得△BEM是等邊三角形,再證△MEC≌AFE,即可EC=EF,再由∠CEF=60°即可證明.
(1)因為四邊形ABCD是菱形,所以AB= BC=CD=AD.
因為∠B=60°,所以△ABC,△ADC都是等邊三角形.
所以BC=AC,∠B=∠CAF=∠ACB=60°,
又因為BE=AF,所以.△BEC≌△AFC(SAS),所以CE=CF,∠ECF=∠BCA=60°
所以△ECF是等邊三角形,
(2) 因為BE=BM,∠B= 60°
所以△BEM是等邊三角形.
所以∠EMB=∠BEM=60°,∠EMC=∠AEM=120°
因為AB= BC,∠EAF120°,所以.AE=CM,∠EAF=∠EM.
因為∠FEC=60°,所以∠AEF+∠CEM=60°.
又因為∠CEM+∠ECM=60°所以∠AEF=∠ECM.
所以△MEC≌AFE(ASA),所以EC=EF.
又因為∠FEC=60°,所以△EFC是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0.
(1)請求出a、b、c的值;
(2)a、b、c所對應(yīng)的點分別為A、B、C,點P為一動點,其對應(yīng)的數(shù)為x,點P在0到2之間運動時(即0≤x≤2時),請化簡式子:|x+1|-|x-1|+2|x+5|(請寫出化簡過程)
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點,且∠A=2∠DCB.E是BC邊上的一點,以EC為直徑的⊙O經(jīng)過點D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元.每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.
(1)若生產(chǎn)第檔次的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且1≤≤10),求出關(guān)于的函數(shù)關(guān)系式;
(2)若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤為1120元,求該產(chǎn)品的質(zhì)量檔次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是AD上的一點,且AE=AD,對角線AC,BD交于點O,EC交BD于F,BE交AC于G,如果平行四邊形ABCD的面積為S,那么,△GEF的面積為( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買A、B兩種型號籃球,詢問了甲、乙兩間學(xué)校了解這兩款籃球的價格,下表是甲、乙兩間學(xué)校購買A、B兩種型號籃球的情況:
購買學(xué)校 | 購買型號及數(shù)量(個) | 購買支出款項(元) | |
A | B | ||
甲 | 3 | 8 | 622 |
乙 | 5 | 4 | 402 |
(1)求A、B兩種型號的籃球的銷售單價;
(2)若該學(xué)校準(zhǔn)備用不多于1000元的金額購買這兩種型號的籃球共20個,求A種型號的籃球最少能采購多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com