【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0.
(1)請求出a、b、c的值;
(2)a、b、c所對應的點分別為A、B、C,點P為一動點,其對應的數(shù)為x,點P在0到2之間運動時(即0≤x≤2時),請化簡式子:|x+1|-|x-1|+2|x+5|(請寫出化簡過程)
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
【答案】(1)-1;1;5;(2)4x+10或2x+12.;(3)不變,理由見解析.
【解析】
(1)根據(jù)b是最小的正整數(shù),即可確定b的值,然后根據(jù)非負數(shù)的性質(zhì),幾個非負數(shù)的和是0,則每個數(shù)是0,即可求得a,b,c的值;
(2)根據(jù)x的范圍,確定x+1,x-3,5-x的符號,然后根據(jù)絕對值的意義即可化簡;
(3)先求出BC=3t+4,AB=3t+2,從而得出BC-AB=2.
(1)∵b是最小的正整數(shù),∴b=1.
根據(jù)題意得:c-5=0且a+b=0,
∴a=-1,b=1,c=5.
故答案是:-1;1;5;
(2)當0≤x≤1時,x+1>0,x-1≤0,x+5>0,
則:|x+1|-|x-1|+2|x+5|
=x+1-(1-x)+2(x+5)
=x+1-1+x+2x+10
=4x+10;
當1<x≤2時,x+1>0,x-1>0,x+5>0.
∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)
=x+1-x+1+2x+10
=2x+12;
(3)不變.理由如下:
t秒時,點A對應的數(shù)為-1-t,點B對應的數(shù)為2t+1,點C對應的數(shù)為5t+5.
∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,
∴BC-AB=(3t+4)-(3t+2)=2,
即BC-AB的不隨著時間t的變化而改變.
科目:初中數(shù)學 來源: 題型:
【題目】(1)15-[3-(-5-4)];
(2)2.5-(-2)÷-1.5;
(3)2-{8+(-1)-[(-4)×2÷(-2)+6×(-6)]}.
(4)(-5)×(+2019)+(+7)×(-2019)+12×2019.
(5) (用簡便方法).
(6).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于點D,AB=5,點E是邊AB上的動點(不與A,B點重合),連接DE,過點D作DF⊥DE交AC于點F,連接EF,點H在線段AD上,且DH=AD,連接EH,HF,記圖中陰影部分的面積為S1,△EHF的面積記為S2,則S2的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.
(1)如圖,求∠QEP的度數(shù);
(2)如圖,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國慶節(jié)放假時,小華一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆.早上從家里出發(fā),向東走了4千米到超市買東西,然后又向東走了3千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里.
(1)若以家為原點,向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點A、B、C表示出來;
(2)問超市A和外公家C相距多少千米?
(3)若小轎車每千米耗油0.09升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量.(精確到0.1升)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上點對應的數(shù)分別是、,為數(shù)軸上兩個動點,它們同時向右運動.點從點出發(fā),速度為每秒個單位長度;點從點出發(fā),速度為點的倍,點為原點.
(1)當運動秒時,點對應的數(shù)分別是 、 .
(2)求運動多少秒時,點中恰有一個點為另外兩個點所連線段的中點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示1和3兩點之間的距離 .
(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是 .
(3)數(shù)軸上表示x和1的兩點之間的距離表示為 .
(4)若x表示一個有理數(shù),且﹣4<x<2,則|x﹣2|+|x+4|= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號內(nèi):
1,-0.1,-789,25,0,-20,-3.14,
正整數(shù)集{___…}; 負整數(shù)集{___…},
正分數(shù)集{____…}; 負分數(shù)集{____…};
正有理數(shù)集{______…}; 負有理數(shù)集{______…}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B= 60°.
(1)如圖①.若點E、F分別在邊AB、AD上,且BE=AF,求證:△CEF是等邊三角形.
(2)小明發(fā)現(xiàn),當點E、F分別在邊AB、AD上,且∠CEF=60°時,△CEF也是等邊三角形,
并通過畫圖驗證了猜想;小麗通過探索,認為應該以CE= EF為突破口,構(gòu)造兩個全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了△CEF是等邊三角形.請你根據(jù)小倩的方法,寫出完整的證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com