【題目】已知:b是最小的正整數(shù),且a、b滿足(c52+|a+b|=0

1)請(qǐng)求出ab、c的值;

2a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P02之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|-|x-1|+2|x+5|(請(qǐng)寫(xiě)出化簡(jiǎn)過(guò)程)
3)在(1)(2)的條件下,點(diǎn)AB、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

【答案】1-1;1;5;(24x+102x+12.;(3)不變,理由見(jiàn)解析.

【解析】

1)根據(jù)b是最小的正整數(shù),即可確定b的值,然后根據(jù)非負(fù)數(shù)的性質(zhì),幾個(gè)非負(fù)數(shù)的和是0,則每個(gè)數(shù)是0,即可求得ab,c的值;

2)根據(jù)x的范圍,確定x+1x-3,5-x的符號(hào),然后根據(jù)絕對(duì)值的意義即可化簡(jiǎn);

3)先求出BC=3t+4AB=3t+2,從而得出BC-AB=2

1)∵b是最小的正整數(shù),∴b=1

根據(jù)題意得:c-5=0a+b=0,

a=-1,b=1,c=5

故答案是:-1;15;

2)當(dāng)0≤x≤1時(shí),x+10x-1≤0,x+50,

則:|x+1|-|x-1|+2|x+5|

=x+1-1-x+2x+5

=x+1-1+x+2x+10

=4x+10;

當(dāng)1x≤2時(shí),x+10,x-10x+50

|x+1|-|x-1|+2|x+5|=x+1-x-1+2x+5

=x+1-x+1+2x+10

=2x+12;

3)不變.理由如下:

t秒時(shí),點(diǎn)A對(duì)應(yīng)的數(shù)為-1-t,點(diǎn)B對(duì)應(yīng)的數(shù)為2t+1,點(diǎn)C對(duì)應(yīng)的數(shù)為5t+5

BC=5t+5-2t+1=3t+4,AB=2t+1--1-t=3t+2,

BC-AB=3t+4-3t+2=2,

BC-AB的不隨著時(shí)間t的變化而改變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)15[3(54)]

(2)2.5(2)÷1.5;

(3)2{8(1)[(4)×2÷(2)6×(6)]}

(4)(5)×(2019)(7)×(2019)12×2019.

(5) (用簡(jiǎn)便方法)

(6).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角ABC中,∠BAC90°,ADBC于點(diǎn)DAB5,點(diǎn)E是邊AB上的動(dòng)點(diǎn)(不與A,B點(diǎn)重合),連接DE,過(guò)點(diǎn)DDFDEAC于點(diǎn)F,連接EF,點(diǎn)H在線段AD上,且DHAD,連接EH,HF,記圖中陰影部分的面積為S1,EHF的面積記為S2,則S2的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠DAC90°ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長(zhǎng)交直線AD于點(diǎn)E

1)如圖,求∠QEP的度數(shù);

2)如圖,若∠DAC135°,∠ACP15°,且AC4,求BQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶節(jié)放假時(shí),小華一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆.早上從家里出發(fā),向東走了4千米到超市買(mǎi)東西,然后又向東走了3千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里.

(1)若以家為原點(diǎn),向東為正方向,用1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來(lái);

(2)問(wèn)超市A和外公家C相距多少千米?

(3)若小轎車每千米耗油0.09升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量.(精確到0.1升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)分別是、,為數(shù)軸上兩個(gè)動(dòng)點(diǎn),它們同時(shí)向右運(yùn)動(dòng).點(diǎn)從點(diǎn)出發(fā),速度為每秒個(gè)單位長(zhǎng)度;點(diǎn)從點(diǎn)出發(fā),速度為點(diǎn)倍,點(diǎn)為原點(diǎn).

1)當(dāng)運(yùn)動(dòng)秒時(shí),點(diǎn)對(duì)應(yīng)的數(shù)分別是 .

2)求運(yùn)動(dòng)多少秒時(shí),點(diǎn)中恰有一個(gè)點(diǎn)為另外兩個(gè)點(diǎn)所連線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、bA、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB|ab|

利用數(shù)形結(jié)合思想回答下列問(wèn)題:

(1)數(shù)軸上表示13兩點(diǎn)之間的距離   

(2)數(shù)軸上表示﹣12和﹣6的兩點(diǎn)之間的距離是   

(3)數(shù)軸上表示x1的兩點(diǎn)之間的距離表示為   

(4)x表示一個(gè)有理數(shù),且﹣4x2,則|x2|+|x+4|   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):

1,-0.1-789,25,0-20,-3.14,

正整數(shù)集{___…}; 負(fù)整數(shù)集{___…},

正分?jǐn)?shù)集{____…}; 負(fù)分?jǐn)?shù)集{____…}

正有理數(shù)集{______…}; 負(fù)有理數(shù)集{______…}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊AB、AD上,且∠CEF=60°時(shí),CEF也是等邊三角形,

并通過(guò)畫(huà)圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫(xiě)出完整的證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案