【題目】如圖,四邊形是正方形,是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60度得到BN,連接

1)求證:

2)①當(dāng)M點在何處時, 的值最;

②當(dāng)M點在何處時,的值最小,并說明理由

【答案】1)見解析;(2)①當(dāng)M點在BD的中點處時,A,M,C三點共線,最;②當(dāng)M位于BDCE交點處時,的值最小,見解析

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)得BM=BN,∠MBN=60°,則可判斷△ABE是等邊三角形,得到BA=BE,∠ABE=60°,易得∠ABM=EBN,然后根據(jù)“SAS”可判斷△AMB≌△ENB;(2)①連接AC,ACBD相交于點O,如圖1,根據(jù)正方形的性質(zhì)得點OBD的中點,根據(jù)兩點之間線段最短得到AM+CMAC(當(dāng)M點在AC上時取等號),于是得到當(dāng)M點在BD的中點時,AM+CM的值最小;②由△BMN為等邊三角形得BM=MN,由△AMB≌△ENBEN=AM,根據(jù)兩點之間線段最短,當(dāng)點E、N、MC共線時,AM+BM+CM的值最小.

1)證明:是等邊三角形,

,

,

,

中,

,

;

2)①如圖,連接AC,AC與BD相交于點O,

∵四邊形ABCD是正方形,

∴點O為BD的中點,

∵AM+CM≥AC(當(dāng)M點在AC上時取等號),

∴當(dāng)M點在BD的中點時,AM+CM的值最;

②如圖,連接CE,當(dāng)M位于BDCE交點處時,的值最小;

理由如下:連接由MN1)知,,

,

是等邊三角形,

,

,

根據(jù)兩點之間線段最短知:若E,N,M,C在同一直線上時,取得最小值,最小值為,

,

,

若連接EC,則,

,

可以同時在直線EC上.

所以當(dāng)M點位于BDCE的交點處時,的值最小,即等于EC的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃金1玉米種子的價格為5/kg.如果一次購買5kg以上的種子,超過5kg部分的種子價格打8折.

1)購買3kg種子,需付款   元,購買6kg種子,需付款   元.

2)設(shè)購買種子x kg,付款金額為y元,寫出yx之間的函數(shù)解析式.

3)張大爺要購買種子5千克,李大爺要購買種子4千克,怎樣購買讓他們花錢最少?他們各應(yīng)付款多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,E,F分別是ADAD延長線上的點,且DE=DF,連接BFCE,且∠FBD=35°BDF=75°,下列說法:①BDFCDE;ABDACD面積相等;③BFCE;④∠DEC=70°,其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A、Bx軸上、點Cy軸上,點AB、C的坐標(biāo)分別為A,0),B(3,0),C(0,5),點D在第一象限內(nèi),且∠ADB=60°,則線段CD長的最小值為( 。

A. 2 B. 2﹣2 C. 4 D. 2﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三個頂點坐標(biāo)分別為

1)在所給的平面直角坐標(biāo)系中畫出三角形

2)直接寫出點A關(guān)于軸,軸的對稱點坐標(biāo)

3)若在軸上找一點P,使得,請在圖中作出點P(尺規(guī)作圖,不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠BAC30°,D為角平分線上一點,DEACE,DFAC,且交AB于點F

1)求證:△AFD為等腰三角形;

2)若DF10cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;

(2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點A(m,6)和點B(﹣3,n),直線AB與y軸交于點C.

(1)求直線AB的表達(dá)式;

(2)求AC:CB的值.

查看答案和解析>>

同步練習(xí)冊答案