【題目】如圖所示,∠BAC=30°,D為角平分線上一點(diǎn),DE⊥AC于E,DF∥AC,且交AB于點(diǎn)F.
(1)求證:△AFD為等腰三角形;
(2)若DF=10cm,求DE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)DE=5cm.
【解析】
(1)利用平行線和角平分線的性質(zhì),證得等角,利用等角對(duì)等邊這一判定定理證明△AFD為等腰三角形.
(2)AD是角平分線,易證∠GFD=30°,又△GFD是直角三角形,所以30°銳角所對(duì)的直角邊等于斜邊的一半這一性質(zhì),求出DE=5.
(1)證明:
如圖所示,
∵DF∥AC,
∴∠3=∠2,
∵AD是角平分線,
∴∠1=∠2,
∴∠1=∠3,
∴FD=FA,
∴△AFD為等腰三角形.
(2)
如圖,過(guò)D作DG⊥AB,垂足為G,
∵∠1=∠2=∠BAC,∠BAC=30°,
∴∠1=15°,
又∵∠1=∠3,
∴∠1=∠3=15°,
∴∠GFD=∠1+∠3=15°+15°=30°,
在Rt△FDG中,DF=10cm,∠GFD=30°,
∴DG=5cm,
∵AD為∠BAC的平分線,DE⊥AC,DG⊥AB,
∴DE=DG=5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用小立方體搭一個(gè)幾何體,是它的主視圖和俯視圖如圖.這樣的幾何體只有一種嗎?它最少需要多少個(gè)立方塊?最多需要多少個(gè)小立方塊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=10,BC=12,E為DC的中點(diǎn),連接BE,作AF⊥BE,垂足為F.
(1)求證:△BEC∽△ABF;
(2)求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60度得到BN,連接
(1)求證:
(2)①當(dāng)M點(diǎn)在何處時(shí), 的值最小;
②當(dāng)M點(diǎn)在何處時(shí),的值最小,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為等邊三角形,,、相交于點(diǎn),于點(diǎn),,.
(1)求證:;
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知 ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,1), B(-3,1),C(-1,4).
①畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
②將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請(qǐng)?jiān)趫D中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,∠B=∠CAD=30°.
(1)AD是⊙O的切線嗎?為什么?
(2)若OD⊥AB,BC=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com