【題目】如圖,在平面直角坐標系中,點AB,C的坐標分別為(1,0),(01),(﹣1,0).一個電動玩具從坐標原點O出發(fā),第一次跳躍到點P1.使得點P1與點O關于點A成中心對稱;第二次跳躍到點P2,使得點P2與點P1關于點B成中心對稱;第三次跳躍到點P3,使得點P3與點P2關于點C成中心對稱;第四次跳躍到點P4,使得點P4與點P3關于點A成中心對稱;第五次跳躍到點P5,使得點P5與點P4關于點B成中心對稱;照此規(guī)律重復下去,則點的坐標為_______

【答案】2,2

【解析】

根據(jù)中心對稱的性質(zhì)找出部分Pn的坐標,根據(jù)坐標的變化找出變化規(guī)律“P6n00),P6n+12,0),P6n+2-2,2),P6n+30,-2),P6n+42,2),P6n+5-2,0)(n為自然數(shù)),依此規(guī)律即可得出結(jié)論.

觀察,發(fā)現(xiàn)規(guī)律:P00,0),P12,0),P2-22),P30,-2),P42,2),P5-2,0),P600),P720),
P6n0,0),P6n+12,0),P6n+2-2,2),P6n+30,-2),P6n+42,2),P6n+5-20)(n為自然數(shù)).
2020=6×336+4,
P20202,2).
故答案為:(2,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線y=m是平行于X軸的直線,將拋物線y=-x2-4x在直線y=m上側(cè)的部分沿直線 y=m翻折,翻折后的部分與沒有翻折的部分組成新的函數(shù)圖像,若新的函數(shù)圖像剛好與 直線y=-x有3個交點,則滿足條件的m 的值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,點 A 的坐標為(6,0),AB=6,點 P 從點 O出發(fā)沿線段 OA 向終點 A 運動,點 P 的運動速度是每秒 2 個單位長度,點 D 是線段 OA 的中點.

1)求點 B 的坐標;

2)設點 P 的運動時間為點 t 秒,BDP 的面積為 S,求 S t 的函數(shù)關系式;

3)當點 P 與點 D 重合時,連接 BP,點 E 在線段 AB 上,連接 PE,當BPE=2∠OBP 時, 求點 E 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校對某班學生“五一”小長假期間的度假情況進行調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下面的問題:

(1)求出該班學生的總?cè)藬?shù);

(2)補全頻數(shù)分布直方圖;

(3)求出扇形統(tǒng)計圖中∠α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接BD,且BDCD,過點AAMBD于點M,過點DDNAB于點N,且DN4,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,ABC的頂點均在格點上,直線a為對稱軸,AC都在對稱軸上.

1ABC以直線a為對稱軸作AB1C;

2)若∠BAC=30°,則∠BAB1=______°;

3)求ABB1的面積等于______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦前夕,湖州吳興某工藝廠設計了一款成本10/件的工藝品投放市場試銷.試銷發(fā)現(xiàn),每天銷售量y(件)與銷售單價x(元/件)之間的關系可近似地看作一次函數(shù):y=-10x+700. (利潤=銷售總價-成本總價)

如果該廠想要每天獲得5000元的利潤,那么銷售單價應定為多少元/件?

當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?

湖州市物價部門規(guī)定,該工藝品銷售單價最高不能超過38/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋的引橋部分的示意圖,上橋通道由兩段互相平行并且與地面成37°角的樓梯ADBE和一段水平平臺DE構(gòu)成已知天橋高度BC≈4.8,引橋水平跨度AC=8

1求水平平臺DE的長度

2若與地面垂直的平臺立枉MN的高度為3,求兩段樓梯ADBE的長度之比

參考sin37°=0.60,cos37°=0.80,tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某風景區(qū)集體門票的收費標準是30人以內(nèi)(30),每人25元;超過30人,超過部分每人10元.

1)寫出應收門票費()與游覽人數(shù)()之間的函數(shù)關系式;

2)利用(1)中的函數(shù)關系式計算,某班54人去該風景區(qū)旅游時,為購門票共花了多少元.

查看答案和解析>>

同步練習冊答案