拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).

(1)求拋物線的解析式;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
①當(dāng)x取什么值時(shí),y>0 ?
②當(dāng)x取什么值時(shí),y的值隨x的增大而減。

(1);(2)(-1,0),(3,0);(3)圖象見(jiàn)解析;(4)①-1<x<3,②x≥1.

解析試題分析:(1)將(0,3)代入y=-x2+(m-1)x+m求得m,即可得出拋物線的解析式;
(2)令y=0,求得與x軸的交點(diǎn)坐標(biāo);令x=0,求得與y軸的交點(diǎn)坐標(biāo);
(3)得出對(duì)稱軸,頂點(diǎn)坐標(biāo),畫出圖象即可;
(4)①當(dāng)y>0時(shí),即圖象在一、二象限內(nèi)的部分;②在對(duì)稱軸的右側(cè),y的值隨x的增大而減小.
試題解析:(1)∵拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點(diǎn),∴m=3.
∴拋物線的解析式為.
(2)令y=0,得,解得x=-1或3. 
∴拋物線與x軸的交點(diǎn)坐標(biāo)(-1,0),(3,0);
(3)對(duì)稱軸為x=1,頂點(diǎn)坐標(biāo)(1,4),圖象如圖:

(4)如圖,①當(dāng)-1<x<3時(shí),y>0.
②當(dāng)x≥1時(shí),y的值隨x的增大而減。
考點(diǎn):1.拋物線與x軸的交點(diǎn)2.;二次函數(shù)的圖象;3.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=x²-4x+3.
(1)該拋物線的對(duì)稱軸是       ,頂點(diǎn)坐標(biāo)               ;
(2)將該拋物線向上平移2個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度得到新的二次函數(shù)圖像,請(qǐng)寫出相應(yīng)的解析式,并用列表,描點(diǎn),連線的方法畫出新二次函數(shù)的圖像;

x
 

 
 
 
 
 
 
 
 
 
 
 

 
y
 

 
 
 
 
 
 
 
 
 
 
 

 
 

(3)新圖像上兩點(diǎn)A(x1,y1),B(x2,y2),它們的橫坐標(biāo)滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,用長(zhǎng)為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,拋物線與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).

(1)求該拋物線的解析式;
(2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

銳角△ABC中,BC=6,,兩動(dòng)點(diǎn)M,N分別在邊AB,AC上滑動(dòng),且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長(zhǎng)為x,正方形MPQN與△ABC公共部分的面積為y(y>0).

(1)求△ABC中邊BC上高AD;
(2)當(dāng)x為何值時(shí),PQ恰好落在邊BC上(如圖1);
(3)當(dāng)PQ在△ABC外部時(shí)(如圖2),求y關(guān)于x的函數(shù)關(guān)系式(注明x的取值范圍),并求出x為何值時(shí)y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線x=﹣4與x軸交于點(diǎn)E,一開(kāi)口向上的拋物線過(guò)原點(diǎn)交線段OE于點(diǎn)A,交直線x=﹣4于點(diǎn)B,過(guò)B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線經(jīng)過(guò)A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對(duì)稱軸和C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線 軸交于兩點(diǎn)A,B,且,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案