已知拋物線 軸交于兩點A,B,且,求k的值.

解析試題分析:由拋物線與軸交于兩點,可得△﹥0,由題意知方程的兩根為.
由韋達定理得:
解得:;把k的值代入△﹥0驗證,當(dāng)時,滿足;當(dāng)時,不滿足;所以.
試題解析:拋物線與軸交于兩點,
 ①
由題意知方程的兩根為.
由韋達定理得: 
 
即:,解得:;
當(dāng)時,代入①滿足;當(dāng)時,代入①不滿足;
綜上,.
考點:1.韋達定理.2.根的判別式.3. 拋物線與一元二次方程的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線y=-x2+(m-1)x+m與y軸交于點(0,3).

(1)求拋物線的解析式;
(2)求拋物線與x軸的交點坐標(biāo);
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
①當(dāng)x取什么值時,y>0 ?
②當(dāng)x取什么值時,y的值隨x的增大而減?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y1=-x2+3與x軸交于A、B兩點,與直線y2=-x+b相交于B、C兩點.

(1)求直線BC的解析式和點C的坐標(biāo);
(2)若對于相同的x,兩個函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標(biāo)為。點P是y軸右側(cè)的拋物線上一動點,過點P作軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標(biāo)為m,當(dāng)m為何值時,以O(shè),C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由。
(3)若存在點P,使,請直接寫出相應(yīng)的點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應(yīng)點為A′,點B的對應(yīng)點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與直線交于點O(0,0),A(,12),點B是拋物線上O,A之間的一個動點,過點B分別作軸、軸的平行線與直線OA交于點C,E.

(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點D的坐標(biāo)為(,),求出,之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA方向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)當(dāng)t為何值時,PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),求S與t的函數(shù)關(guān)系式
(3)是否存在某時刻t,使四邊形BPQC的面積為△ABC面積的三分之二?若存在,求出此時t的值;若不存在,請說明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t,使四邊形AQPQ′為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經(jīng)過點A、D及點M(﹣1,﹣1﹣m).

(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點P到達最高位置時的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,頂點為M的拋物線經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案