【題目】如圖1,是全國最大的瓷碗造型建筑,座落于江西景德鎮(zhèn),整體造型概念來自“宋代影青斗笠碗”,造型莊重典雅,象征“萬瓷之母”.小敏為了計(jì)算該建筑物橫斷面(瓷碗橫斷面ABCD為等腰梯形)的高度,如圖2,她站在與瓷碗底部AB位于同一水平面的點(diǎn)P處測(cè)得瓷碗頂部點(diǎn)D的仰角為45°,而后沿著一段坡度為0.44(坡面與水平線夾角的正切值)的小坡PQ步行到點(diǎn)Q(此過程中AD,AP,PQ始終處于同一平面)后測(cè)得點(diǎn)D的仰角減少了5°.已知坡面PQ的水平距離為20米,小敏身高忽略不計(jì),試計(jì)算該瓷碗建筑物的高度.(參考數(shù)據(jù):sin 40°≈0.64,tan 40°≈0.84)

【答案】該瓷碗建筑物的高度約為50米.

【解析】

根據(jù)∠DPA=45°得到DH=PH,根據(jù)正切的定義求出PM,求出a;

分別過點(diǎn)D,P向水平線作垂線,與過點(diǎn)Q的水平線分別交于點(diǎn)N,M,DNPA交于點(diǎn)H,如解圖所示,則四邊形PMNH是矩形.

PM=HN,PH=MN.

由題意可知∠DPA=45°,DQN=45°-5°=40°.

RtDHP中,

∵∠DPA=45°,

DH=PH.

設(shè)該瓷碗建筑物的高度DHx,則PH=DH=MN=x.

RtPQM中,

tan PQM==0.44,QM=20,

PM=0.44QM=0.44×20=8.8,

DN=DH+HN=x+8.8,QN=QM+MN=x+20.

RtDQN中,tan DQN=

≈0.84,

解得x≈50.

答:該瓷碗建筑物的高度約為50米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校全體學(xué)生積極參加校團(tuán)委組織的獻(xiàn)愛心捐款活動(dòng),為了解捐款情況,隨機(jī)抽取了部分學(xué)生并對(duì)他們的捐款情況作了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(統(tǒng)計(jì)圖中每組含最小值,不含最大值).請(qǐng)依據(jù)圖中信息解答下列問題:

1)求隨機(jī)抽取的學(xué)生人數(shù);

2)填空:(直接填答案)

“20元~25部分對(duì)應(yīng)的圓心角度數(shù)為______;

②捐款的中位數(shù)落在______(填金額范圍);

3)若該校共有學(xué)生3500人,請(qǐng)估算全校捐款不少于20元的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把方程(x- m)2+(y-n)2=r2稱為圓心為(m,n)、半徑長為r的圓的標(biāo)準(zhǔn)方程.例如,圓心為(1,-2)、半徑長為3的圓的標(biāo)準(zhǔn)方程是(x- 1)2+(y+2)2=9.在平面直角坐標(biāo)系中,C與軸交于點(diǎn)AB.且點(diǎn)B的坐標(biāo)為(80),y軸相切于點(diǎn)D(0, 4),過點(diǎn)A,B,D的拋物線的頂點(diǎn)為E

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)試判斷直線AE與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,,,分別在直線軸上.,,都是等腰直角三角形,它們的面積分別記作,,,,如果點(diǎn)的坐標(biāo)為,那么的縱坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°AB=2,AC=3DBC的中點(diǎn),動(dòng)點(diǎn)E,F分別在AB,AC上,分別過點(diǎn)EGADFH,交BC于點(diǎn)G、H,若EFBC,則EF+EG+FH的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,由8個(gè)面積均為1的小正方形組成的L型模板如圖放置,則矩形ABCD的周長為 _

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸,y軸的正半軸分別交于點(diǎn)和點(diǎn),與x軸負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿折線向終點(diǎn)B勻速運(yùn)動(dòng),將線段繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到線段,連接.

1)求拋物線的函數(shù)表達(dá)式;

2)如圖2,當(dāng)點(diǎn)N在線段上時(shí),求證:;

3)當(dāng)點(diǎn)N在線段上時(shí),直接寫出此時(shí)直線與拋物線交點(diǎn)的縱坐標(biāo);

4)設(shè)的長度為n,直接寫出在點(diǎn)M移動(dòng)的過程中,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)寫出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;

(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過12000步(包含12000步)的教師有多少名?

(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式.方式一:先購買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)4元;方式二:不購買會(huì)員證,每次游泳付費(fèi)10元.設(shè)小明計(jì)劃今年夏季游泳次數(shù)為xx為正整數(shù)).

(1)根據(jù)題意,填寫下表:

游泳次數(shù)

10

15

20

x

方式一的總費(fèi)用(元)

140

160

_______

_______

方式二的總費(fèi)用(元)

100

150

________

________

(2)若小明計(jì)劃今年夏季游泳的總費(fèi)用為260元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?

(3)小明選擇哪種付費(fèi)方式更合算?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案