【題目】如圖,已知拋物線經(jīng)過A(-1,0),B(3,0)兩點,與y軸相交于點C,該拋物線的頂點為點D.
(1)求該拋物線的解析式及點D的坐標;
(2)連接AC,CD,DB,BC,設(shè)△AOC,△BOC,△BCD的面積分別為 S1,S2,S3,求證:.
(3)點M是線段AB上一動點(不包括點A和點B),過點M作MN//BC交AC于點N,連接MC,是否存在點M使∠AMN=∠ACM?若存在,求出點M的坐標和此時直線MN的解析式;若不存在,請說明理由.
【答案】(1)點D的坐標為(1,-4);(2)見解析(3)直線MN的解析式為.
【解析】
試題
(1)由拋物線過點A(-1,0),B(3,0)可得其解析式為:,化簡、再配方為頂點式,可得頂點D的坐標;
(2)連接AC,CD,DB,BC,由(1)中所求解析式可得點C的坐標,這樣就可由A、B、C、D、O五點的坐標分別求出三個三角形△AOC,△BOC,△BCD的面積,從而可證得:.
(3)由題意可設(shè)點M的坐標為(m,0),其中-1<m<3,則AM=m+1;由已知和(2)可求得:AC=,AB=4;由MN∥BC可得:AM:AB=AN:AC,從而可得解得:AN=;由∠AMN=∠ACM,∠MAN=∠CAM,可得△AMN∽△ACM,因此:AM:AC=AN:AM,由此可列出關(guān)于m的方程,解方程求得m的值即可得到點M的坐標,然后利用已知可求得直線BC的解析式,再由MN∥BC,即可求得直線MN的解析式.
試題解析:
(1)∵拋物線過點A(-1,0),B(3,0)
∴拋物線的解析式為y=(x+1)(x-3),即y=x2-2x-3.
∵y=x2-2x-3=(x-1)2-4,
∴點D的坐標為(1,-4)
(2)如下圖,
∵當(dāng)x=0時,y=x2-2x-3=-3,
∴C(0,-3),
又∵A(-1,0),B(3,0),
∴,
,
.
∴.
∴△BCD為直角三角形,.
∴.
∵,,
∴.
(3)存在點M使∠AMN=∠ACM.
設(shè)點M的坐標為(m,0)(-1<m<3),則MA=m+1,
,AB=1+3=4,
∵MN//BC,
∴AM:AB=AN:AC,即(m+1):AN=4:.
解得AN=.
∵∠AMN=∠ACM,∠MAN=∠CAM,
∴△AMN∽△ACM.
∴AM:AC=AN:AM.即(m+1)2=.
解得m1=-1(不合題意,舍去),.
∴點M的坐標為.
設(shè)直線BC的解析式為y=kx+b.
把B(3,0),C(0,-3)代入,得解得
∴直線BC的解析式為y=x-3.
又∵MN//BC,
∴設(shè)直線MN的解析式為y=x+n.
把點M的坐標代入,得.
∴直線MN的解析式為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兒童節(jié)期間,某公園游戲場舉行一場活動.有一種游戲的規(guī)則是:在一個裝有8個紅球和若干白球(每個球除顏色外,其他都相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個海寶玩具.已知參加這種游戲的兒童有40 000人,公園游戲場發(fā)放海寶玩具8 000個.
(1)求參加此次活動得到海寶玩具的頻率?
(2)請你估計袋中白球的數(shù)量接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有形狀、大小和質(zhì)地都相同的四張卡片,正面分別寫有A,B,C,D和一個等式,將這四張卡片背面向上洗勻,從中隨機抽取一張(不放回),接著再隨機抽取一張.
(1)用畫樹狀圖或列表的方法表示抽取兩張卡片可能出現(xiàn)的所有情況(結(jié)果用A,B,C,D表示).
(2)小明和小強按下面規(guī)則做游戲:抽取的兩張卡片上若等式都不成立,則小明勝;若至少有一個等式成立,則小強勝.你認為這個游戲公平嗎?若公平,請說明理由;若不公平,則這個規(guī)則對誰有利?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側(cè)),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉(zhuǎn),到與BC重合時停止,設(shè)直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+(2﹣a)x﹣2(a>0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C.給出下列結(jié)論:
①在a>0的條件下,無論a取何值,點A是一個定點;
②在a>0的條件下,無論a取何值,拋物線的對稱軸一定位于y軸的左側(cè);
③y的最小值不大于﹣2;
④若AB=AC,則a=.
其中正確的結(jié)論有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點B、C(p+4,q),且它的頂點N在直線l上.
(1)若B(-2,1),
①請在平面直角坐標系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點Q的模坐標為e(-2≤e≤0)過點Q作x軸的垂線,與直線l交于點H.若QH=d,當(dāng)d隨e的增大面增大時,求e的取值范圍;
(2)拋物線m與y軸交于點F,當(dāng)拋物線m與x軸有唯一交點時,判斷△NOF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=BC=4,AD=DE,點F是BE的中點,連接DF,CF.
(1)如圖1,當(dāng)點D在AB上,且點E是AC的中點時,求CF的長.
(2)如圖1,若點D落在AB上,點E落在AC上,證明:DF⊥CF.
(3)如圖2,當(dāng)AD⊥AC,且E點落在AC上時,判斷DF與CF之間的關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com