【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
【答案】(1)10°;(2)∠DAE=(∠C-∠B),證明見解析.
【解析】
(1)利用三角形內(nèi)角和定理求得∠BAC=100°,根據(jù)角平分線定義可知∠EAC=∠BAC,再利用三角形內(nèi)角和先求出∠DAC,再求得∠DAE;
(2)按照(1)中思路,進行推導(dǎo)即可解決問題.
(1)解:∵∠B=30°,∠C=50°,
∴∠BAC=180°-∠B-∠C=100°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=50°
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°
∴∠DAE=∠EAC-∠DAC=50°-40°=10°
(2)解:∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C)
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,
∴∠DAE=∠EAC-∠DAC=(180°-∠B-∠C)-(90°-∠C)
=(∠C-∠B)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(一)閱讀
求x+6x+11的最小值.
解:x+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定為非負數(shù),所以(x+3)2+2,即x2+6x+11的最小值為2.
(二)解決問題
(1)若m2+2mn+2n2-6n+9=0,求()-3的值;
(2)對于多項式x2+y-2x+2y+5,當x,y取何值時有最小值,最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=-的圖象的兩個分支分布在第_________象限,在每個象限內(nèi),y隨x的增大而_________,函數(shù)y=的圖象的兩個分支分布在第_________象限,在每一個象限內(nèi),y隨x的減小而_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是的外角平分線上一點,且滿足,過點作于點,交的延長線于點,則下列結(jié)論:①;②;③;④.
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兒童節(jié)期間,某公園游戲場舉行一場活動.有一種游戲的規(guī)則是:在一個裝有8個紅球和若干白球(每個球除顏色外,其他都相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個海寶玩具.已知參加這種游戲的兒童有40 000人,公園游戲場發(fā)放海寶玩具8 000個.
(1)求參加此次活動得到海寶玩具的頻率?
(2)請你估計袋中白球的數(shù)量接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( 。
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com