【題目】如圖,點(diǎn)的外角平分線上一點(diǎn),且滿足,過(guò)點(diǎn)于點(diǎn),的延長(zhǎng)線于點(diǎn),則下列結(jié)論:①;②;③;④.

其中正確的結(jié)論有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=DF,再利用“HL”證明RtCDERtBDF全等;根據(jù)全等三角形對(duì)應(yīng)邊相等可得CE=AF,利用“HL”證明RtADERtADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,然后求出CE=AB+AE;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=DCE,然后求出A、B、C、D四點(diǎn)共圓,根據(jù)同弧所對(duì)的圓周角相等可得∠BDC=BAC;DAE=CBD,再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DAE=DAF,然后求出∠DAF=CBD,進(jìn)而得出∠ADF=CDB,不能得出∠ADF=CDE.

解:∵AD平分∠CAF,DEAC,DFAB,

DE=DF,

RtCDERtBDF中,

RtCDERtBDF(HL),故①正確;

CE=AF,

RtADERtADF中,

RtADERtADF(HL),

AE=AF,

CE=AB+AF=AB+AE,故②正確;

RtCDERtBDF,

∴∠DBF=DCE,

A、B、C、D四點(diǎn)共圓,

∴∠BDC=BAC,故④正確;

DAE=CBD,

RtADERtADF,

∴∠DAE=DAF,

∴∠DAF=CBD,

BD=CD,

∴∠DBC=DCB,

∴∠ADF=CAD,

∴∠ADF≠CDE,故③錯(cuò)誤;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A,B,C,點(diǎn)A坐標(biāo)為(﹣1,0).

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連接CD,點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn)(不與B,C重合),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),四邊形PCDB的面積最大?求出此時(shí)四邊形PCDB面積的最大值和點(diǎn)P坐標(biāo);
(3)在拋物線上的對(duì)稱軸上:是否存在一點(diǎn)M,使|MA﹣MC|的值最大;是否存在一點(diǎn)N,使△NCD是以CD為腰的等腰三角形?若存在,直接寫(xiě)出點(diǎn)M,點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】清晨,張強(qiáng)從家跑步去迎澤公園,在公園鍛煉了一段時(shí)間后,又去附近早餐店吃早餐,然后散步走回家.下圖反映了這段時(shí)間內(nèi),張強(qiáng)離家的距離隨離家時(shí)間的變化而變化的情況,其中(分)表示張強(qiáng)離家時(shí)間,(千米)表示他離家的距離.根據(jù)圖象所反映的信息,以下四個(gè)說(shuō)法正確的是(

①迎澤公園離張強(qiáng)家2.5千米.

②張強(qiáng)在迎澤公園鍛煉了15分鐘.

③迎澤公園離早餐店4千米.

④張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí).

A.①②B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為2a ,寬為2b的長(zhǎng)方形,沿圖中虛線剪開(kāi)分成四塊小長(zhǎng)方形,然后按如圖2的形狀拼成一個(gè)正方形.

1)圖2的陰影部分的正方形的邊長(zhǎng)是 ______

2)用兩種不同的方法求圖中陰影部分的面積.

(方法1= _____________;

(方法2=______________;

3)觀察如圖2,寫(xiě)出(a+b2,(a-b2ab這三個(gè)代數(shù)式之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若﹣ a≥b,則a≤﹣2b,其根據(jù)是( )
A.不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變
B.不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變
C.不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變
D.以上答案均不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校利用暑假進(jìn)行田徑場(chǎng)的改造維修,項(xiàng)目承包單位派遣甲施工隊(duì)進(jìn)場(chǎng)施工,計(jì)劃用40天時(shí)間完成整個(gè)工程.當(dāng)甲施工隊(duì)工作5天后,承包單位接到通知,有一大型活動(dòng)要在該田徑場(chǎng)舉行,要求比原計(jì)劃提前14天完成整個(gè)工程,于是承包單位派遣乙施工隊(duì)與甲施工隊(duì)共同完成剩余工程,結(jié)果按通知要求如期完成了整個(gè)工程.

(1)若乙施工隊(duì)單獨(dú)施工,完成整個(gè)工程需要多少天?

(2)若此項(xiàng)工程甲、乙施工隊(duì)同時(shí)進(jìn)場(chǎng)施工,完成整個(gè)工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K-∠H33°,則∠K__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹(shù)形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)用概率知識(shí)解釋.

查看答案和解析>>

同步練習(xí)冊(cè)答案