【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ//BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:∵∠ABE=45°,∠A=90°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,BE= AB=2
∵BE=DE,PD=x,
∴PE=DE﹣PD=2 ﹣x,
∵PQ//BD,BE=DE,
∴QE=PE=2 ﹣x,
又∵△ABE是等腰直角三角形(已證),
∴點Q到AD的距離= (2 ﹣x)=2﹣ x,
∴△PQD的面積y= x(2﹣ x)=﹣ (x2﹣2 x+2)=﹣ (x﹣ 2+ ,
即y=﹣ (x﹣ 2+
縱觀各選項,只有C選項符合.
故選:C.
判斷出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質求出AE、BE,然后表示出PE、QE,再求出點Q到AD的距離,然后根據(jù)三角形的面積公式表示出y與x的關系式,再根據(jù)二次函數(shù)圖象解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)化簡: (2)解方程:

【答案】(1) ;(2)x=-2.

【解析】1)先把括號內通分,再把除法轉化為乘法,并把分子、分母分解因式約分化簡;

(2)兩邊都乘以最簡公分母2(x+3),把分式方程化為整式方程求解,求出x的值不要忘記檢驗.

(1)原式===;

(2)解:去分母得:,

解得:x=2,

經(jīng)檢驗x=2是分式方程的解,

原方程的解x=2

點睛:本題考查了分式的混合運算和解分式方程,熟練掌握分式的運算法則和解分式方程的方法是解答本題的關鍵.

型】解答
束】
20

【題目】小張同學學完統(tǒng)計知識后,隨機調查了她所在轄區(qū)若干名居民的年齡,將調查數(shù)據(jù)繪制成如下扇形統(tǒng)計圖和條形統(tǒng)計圖:

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)小張同學共調查了    名居民的年齡,扇形統(tǒng)計圖中a=    ;

(2)補全條形統(tǒng)計圖,并注明人數(shù);

(3)若在該轄區(qū)中隨機抽取一人,那么這個人年齡是60歲及以上的概率為    ;

(4)若該轄區(qū)年齡在0~14歲的居民約有2400人,請估計該轄區(qū)居民有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是(  )個

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用 6000 元購進一批襯衫,以 60 元/件的價格出售,很快售完,然后又用 13500元購進同款襯衫,購進數(shù)量是第一次的 2 倍,購進的單價比上一次每件多 5 元,服裝店 仍按原售價 60 元/件出售,并且全部售完.

1)該服裝店第一次購進襯衫多少件?

2)將該服裝店兩次購進襯衫看作一筆生意,那么這筆生意是盈利還是虧損?求出盈利(或 虧損)多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 O 是等邊△ABC 內一點,∠AOB105°,∠BOC 等于α,將△BOC 繞點 C 按 順時針方向旋轉 60°得△ADC,連接 OD.

1)求證:△COD 是等邊三角形.

2)求∠OAD 的度數(shù).

3)探究:當α為多少度時,△AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點CCE∥BD,過點DDE∥AC,CEDE相交于點E

1)求證:四邊形CODE是矩形.

2)若AB=5,AC=6,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩站相距240千米,從甲站開出一列慢車,速度為每小時80千米,從乙站開出一列快車,速度為每小時120千米.

(1)若兩車同時開出,背向而行,則經(jīng)過多長時間兩車相距540千米?

(2)若兩車同時開出,同向而行(快車在后),則經(jīng)過多長時間快車可追上慢車?

(3)若兩車同時開出,同向而行(慢車在后),則經(jīng)過多長時間兩車相距300千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)與方差s2如下表所示

平均數(shù)(cm)

561

560

561

560

方差s2

3.5

3.5

15.5

16.5

根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應該選擇( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣3x+3與x軸交于點B,與y軸交于點A,以線段AB為邊,在第一象限內作正方形ABCD,點C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負方向平移a個單位長度,使點D恰好落在雙曲線y= (k≠0)上的點D1處,則a=

查看答案和解析>>

同步練習冊答案