【題目】如圖,中,,平分于點(diǎn),于點(diǎn),如果,,那么的長(zhǎng)為________,的長(zhǎng)為_______.

【答案】4 3

【解析】

依據(jù)ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根據(jù)勾股定理可得AB的長(zhǎng),進(jìn)而得出EB的長(zhǎng);設(shè)DE=CD=x,則BD=8-x,依據(jù)勾股定理可得,RtBDE中,DE2+BE2=BD2,解方程即可得到DE的長(zhǎng).

AD平分CAB,

∴∠CAD=EAD,

∵∠C=90°,DEAB,

∴∠C=AED=90°,

AD=AD,

∴△ACD≌△AED(AAS),

AC=AE=6cm,CD=ED,

RtABC中,AB==10(cm),

BE=AB-AE=10-6=4(cm),

設(shè)DE=CD=x,則BD=8-x,

RtBDE中,DE2+BE2=BD2

x2+42=(8-x)2,

解得x=3,

DE=3cm,

故答案為:4,3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,點(diǎn)E在△ABC外一點(diǎn),CEAE于點(diǎn)E,CEBC

(1)作出△ABC的角平分線AD.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡.)

(2)求證:∠ACE=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中, , , ,DAB邊的中點(diǎn),EAC邊上一點(diǎn),聯(lián)結(jié)DE,過點(diǎn)DBC邊于點(diǎn)F,聯(lián)結(jié)EF

(1)如圖1,當(dāng)時(shí),求EF的長(zhǎng);

(2)如圖2,當(dāng)點(diǎn)EAC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請(qǐng)說出變化情況;如果保持不變,請(qǐng)求出的正切值;

(3)如圖3,聯(lián)結(jié)CDEF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請(qǐng)直接寫出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AD是△ABC的邊BC上的中線.

(1)作出△ABD的邊BD上的高;

(2)若△ABC的面積為10,求△ADC的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的直徑,∠EOD=72°,AE交⊙O于點(diǎn)B,且AB=OC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC.

(1)求證:OE=OF;
(2)若EF⊥AC,△BEC的周長(zhǎng)是10,求ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,,則稱為點(diǎn)之間的距離,記作.已知數(shù)軸上兩點(diǎn),對(duì)應(yīng)的數(shù)分別為,且滿足,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為.

1)若點(diǎn)到點(diǎn)的距離相等,則點(diǎn)對(duì)應(yīng)的數(shù)是_________.

2)數(shù)軸上是否存在點(diǎn),使?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

3)當(dāng)點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從原點(diǎn)向左運(yùn)動(dòng)時(shí),點(diǎn)以每秒3個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),點(diǎn)以每秒15個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),若它們同時(shí)出發(fā),幾秒鐘后點(diǎn)到點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為真分?jǐn)?shù)假分?jǐn)?shù),而假分?jǐn)?shù)都可化為常分?jǐn)?shù),如: 2+ 2 .我們定義:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為真分式.如 , 這樣的分式就是假分式;再如: 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;

解決下列問題:

1)分式 分式(填真分式假分式);

2 將假分式化為帶分式;

3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20154月份的尼泊爾強(qiáng)震曾經(jīng)導(dǎo)致珠峰雪崩,在珠峰搶險(xiǎn)時(shí),需8組登山隊(duì)員步行運(yùn)送物資,要求每組分配的人數(shù)相同,若按每組人數(shù)比預(yù)定人數(shù)多分配1人,則總數(shù)會(huì)超過100人;若按每組人數(shù)比預(yù)定人數(shù)少分配1人,則總數(shù)不夠90人,那么預(yù)定每組分配的人數(shù)是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

同步練習(xí)冊(cè)答案