如圖所示,等邊三角形ABC,點(diǎn)D為其內(nèi)部一點(diǎn),△BDC旋轉(zhuǎn)后與△AEC重合,請(qǐng)判斷△DCE的形狀為
等邊三角形
等邊三角形
分析:利用旋轉(zhuǎn)的性質(zhì)得出∠BCD=∠ACE,DC=EC,進(jìn)而利用等邊三角形的判定得出即可.
解答:解:∵△BDC旋轉(zhuǎn)后與△AEC重合,
∴∠BCD=∠ACE,DC=EC,
∵∠BCA=∠BCD+∠DCA=60°,
∴∠DCE=∠DCA+∠ACE=60°,
∴△DCE是等邊三角形.
故答案為:等邊三角形.
點(diǎn)評(píng):此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì),根據(jù)已知得出∠BCD=∠ACE,DC=EC是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,等邊三角形ABC的邊長為2,點(diǎn)P和Q分別從A和C兩點(diǎn)同時(shí)出發(fā),做勻速運(yùn)動(dòng),且它們的速度相同.點(diǎn)P沿射線AB運(yùn)動(dòng),點(diǎn)Q沿邊BC的延長線運(yùn)動(dòng),設(shè)PQ與直線AC相交于點(diǎn)D,作PE⊥AC于E,當(dāng)P和Q運(yùn)動(dòng)時(shí),線段DE的長是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•恩施州)如圖所示,等邊三角形ABC放置在平面直角坐標(biāo)系中,已知A(0,0)、B(6,0),反比例函數(shù)的圖象經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.
(2)將等邊△ABC向上平移n個(gè)單位,使點(diǎn)B恰好落在雙曲線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,等邊三角形ABC的邊長是6,點(diǎn)P在邊AB上,點(diǎn)Q在BC的延長線上,且AP=CQ,設(shè)PQ與AC相交于點(diǎn)D.
(1)當(dāng)∠DQC=30°時(shí),求AP的長.
(2)作PE⊥AC于E,求證:DE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,等邊三角形ABC的邊長為a,分別以點(diǎn)A,B,C為圓心,以
a
2
為半徑的圓兩兩相切于點(diǎn)D,E,F(xiàn),求
DE
,
EF
,
FD
圍成的圖形面積S(圖中陰影部分).

查看答案和解析>>

同步練習(xí)冊答案