如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結(jié)AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個單位長度(0<t≤3)時,△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

(1)y=-x2+2x+3.B(1,4).(2)證明見解析;(3)P1(0,0),P2(9,0),P3(0,-).(4)s=.

解析試題分析:(1)利用兩根式列出二次函數(shù)解析式y(tǒng)=a(x-3)(x+1),把將E(0,3)代入即可求出a的值,繼而可求頂點B的坐標;
(2)過點B作BM⊥y于點M,利用已知條件先證明AB是△ABE外接圓的直徑.再證CB⊥AB即可.
(3)存在;
(4)分兩種情況進行討論即可.
試題解析:(1)解:由題意,設(shè)拋物線解析式為y=a(x-3)(x+1).
將E(0,3)代入上式,解得:a=-1.
∴y=-x2+2x+3.
則點B(1,4).
(2)如圖,證明:過點B作BM⊥y于點M,則M(0,4).
在Rt△AOE中,OA=OE=3,
∴∠1=∠2=45°,AE==3
在Rt△EMB中,EM=OM-OE=1=BM,
∴∠MEB=∠MBE=45°,BE==
∴∠BEA=180°-∠1-∠MEB=90°.
∴AB是△ABE外接圓的直徑.
在Rt△ABE中,tan∠BAE===tan∠CBE,
∴∠BAE=∠CBE.
在Rt△ABE中,∠BAE+∠3=90°,
∴∠CBE+∠3=90°.
∴∠CBA=90°,即CB⊥AB.
∴CB是△ABE外接圓的切線.

(3)P1(0,0),P2(9,0),P3(0,-).
(4)解:設(shè)直線AB的解析式為y=kx+b.
將A(3,0),B(1,4)代入,得解得
∴y=-2x+6.
過點E作射線EF∥x軸交AB于點F,當y=3時,得x=
∴F(,3).
情況一:如圖7,當0<t≤時,設(shè)△AOE平移到△DNM的位置,MD交AB于點H,MN交AE于點G.
則ON=AD=t,過點H作LK⊥x軸于點K,交EF于點L.
由△AHD∽△FHM,得.即.解得HK=2t.
∴S=S△MND-S△GNA-S△HAD=×3×3-(3-t)2-t·2t=-t2+3t.

情況二:如圖8,當<t≤3時,設(shè)△AOE平移到△PQR的位置,PQ交AB于點I,交AE于點V.由△IQA∽△IPF,得.即.解得IQ=2(3-t).
∴S陰=S△IQA-S△VQA=×(3-t)×2(3-t)-(3-t)2=(3-t)2=t2-3t+
綜上所述:s=.
考點:二次函數(shù)綜合題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

如圖,一條拋物線(m<0)與x軸相交于A、B兩點(點A在點B的左側(cè)).若點M、N的坐標分別為(0,—2)、(4,0),拋物線與直線MN始終有交點,線段AB的長度的最小值為            

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商店銷售一種商品,每件的進價為2.5元,根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量為500件,而單價每降低1元,就可以多售出200件.請你分析,銷售單價多少時,可以獲利最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx(a<0)的圖象過坐標原點O,與x軸的負半軸交于點A,過A點的直線與y軸交于B,與二次函數(shù)的圖象交于另一點C,且C點的橫坐標為﹣1,AC:BC=3:1.
(1)求點A的坐標;
(2)設(shè)二次函數(shù)圖象的頂點為F,其對稱軸與直線AB及x軸分別交于點D和點E,若△FCD與△AED相似,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

銳角中,,,兩動點分別在邊上滑動,且,以為邊向下作正方形,設(shè)其邊長為,正方形公共部分的面積為
(1)中邊上高         
(2)當        時,恰好落在邊上(如圖1);
(3)當外部時(如圖2),求關(guān)于的函數(shù)關(guān)系式(注明的取值范圍),并求出為何值時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)的對稱軸為y軸,且經(jīng)過(0,0)和(,)兩點,點P在該拋物線上運動,以點P為圓心的⊙P總經(jīng)過定點A(0,2).
(1)求a,b,c的值;
(2)求證:在點P運動的過程中,⊙P始終與x軸相交;
(3)設(shè)⊙P與x軸相交于M(x1,0),N(x2,0)(x1<x2)兩點,當△AMN為等腰三角形時,求圓心P的縱坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=-x2+x-2交x軸于A,B兩點(點A在點B的左側(cè)),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉(zhuǎn),使點D旋轉(zhuǎn)到y(tǒng)軸上得到△FEC,連接BF.
(1)求點B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

復習課中,教師給出關(guān)于x的函數(shù)(k是實數(shù)).
教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(1,0)點;
②函數(shù)圖像與坐標軸總有三個不同的交點;
③當時,不是y隨x的增大而增大就是y隨x的增大而減小;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負數(shù);
教師:請你分別判斷四條結(jié)論的真假,并給出理由,最后簡單寫出解決問題時所用的數(shù)學方法.

查看答案和解析>>

同步練習冊答案